Suppr超能文献

流体剪切应力作用下内皮细胞中肌动蛋白丝排列的模型。

Model for the alignment of actin filaments in endothelial cells subjected to fluid shear stress.

作者信息

Suciu A, Civelekoglu G, Tardy Y, Meister J J

机构信息

Biomedical Engineering Laboratory, Swiss Federal Institute of Technology, Lausanne, Switzerland.

出版信息

Bull Math Biol. 1997 Nov;59(6):1029-46. doi: 10.1007/BF02460100.

Abstract

Cultured vascular endothelial cells undergo significant morphological changes when subjected to sustained fluid shear stress. The cells elongate and align in the direction of applied flow. Accompanying this shape change is a reorganization at the intracellular level. The cytoskeletal actin filaments reorient in the direction of the cells' long axis. How this external stimulus is transmitted to the endothelial cytoskeleton still remains unclear. In this article, we present a theoretical model accounting for the cytoskeletal reorganization under the influence of fluid shear stress. We develop a system of integro-partial-differential equations describing the dynamics of actin filaments, the actin-binding proteins, and the drift of transmembrane proteins due to the fluid shear forces applied on the plasma membrane. Numerical simulations of the equations show that under certain conditions, initially randomly oriented cytoskeletal actin filaments reorient in structures parallel to the externally applied fluid shear forces. Thus, the model suggests a mechanism by which shear forces acting on the cell membrane can be transmitted to the entire cytoskeleton via molecular interactions alone.

摘要

当受到持续的流体剪切应力时,培养的血管内皮细胞会发生显著的形态变化。细胞会伸长并沿施加流动的方向排列。伴随这种形状变化的是细胞内水平的重组。细胞骨架肌动蛋白丝会沿细胞长轴方向重新定向。这种外部刺激如何传递到内皮细胞骨架仍不清楚。在本文中,我们提出了一个理论模型,用于解释在流体剪切应力影响下的细胞骨架重组。我们开发了一个积分 - 偏微分方程组,描述肌动蛋白丝、肌动蛋白结合蛋白的动力学,以及由于施加在质膜上的流体剪切力导致的跨膜蛋白的漂移。对方程的数值模拟表明,在某些条件下,最初随机取向的细胞骨架肌动蛋白丝会重新定向为与外部施加的流体剪切力平行的结构。因此,该模型提出了一种机制,通过这种机制,作用在细胞膜上的剪切力可以仅通过分子相互作用传递到整个细胞骨架。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验