Suppr超能文献

流体剪切应力机械刺激过程中内皮肌动蛋白细胞骨架重塑。

Endothelial actin cytoskeleton remodeling during mechanostimulation with fluid shear stress.

作者信息

Osborn Eric A, Rabodzey Aleksandr, Dewey C Forbes, Hartwig John H

机构信息

Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.

出版信息

Am J Physiol Cell Physiol. 2006 Feb;290(2):C444-52. doi: 10.1152/ajpcell.00218.2005. Epub 2005 Sep 21.

Abstract

Fluid shear stress stimulation induces endothelial cells to elongate and align in the direction of applied flow. Using the complementary techniques of photoactivation of fluorescence and fluorescence recovery after photobleaching, we have characterized endothelial actin cytoskeleton dynamics during the alignment process in response to steady laminar fluid flow and have correlated these results to motility. Alignment requires 24 h of exposure to fluid flow, but the cells respond within minutes to flow and diminish their movement by 50%. Although movement slows, the actin filament turnover rate increases threefold and the percentage of total actin in the polymerized state decreases by 34%, accelerating actin filament remodeling in individual cells within a confluent endothelial monolayer subjected to flow to levels used by dispersed nonconfluent cells under static conditions for rapid movement. Temporally, the rapid decrease in filamentous actin shortly after flow stimulation is preceded by an increase in actin filament turnover, revealing that the earliest phase of the actin cytoskeletal response to shear stress is net cytoskeletal depolymerization. However, unlike static cells, in which cell motility correlates positively with the rate of filament turnover and negatively with the amount polymerized actin, the decoupling of enhanced motility from enhanced actin dynamics after shear stress stimulation supports the notion that actin remodeling under these conditions favors cytoskeletal remodeling for shape change over locomotion. Hours later, motility returned to pre-shear stress levels but actin remodeling remained highly dynamic in many cells after alignment, suggesting continual cell shape optimization. We conclude that shear stress initiates a cytoplasmic actin-remodeling response that is used for endothelial cell shape change instead of bulk cell translocation.

摘要

流体剪切应力刺激可诱导内皮细胞沿施加的血流方向伸长并排列。利用荧光光激活和光漂白后荧光恢复这两种互补技术,我们对内皮肌动蛋白细胞骨架在响应稳定层流的排列过程中的动力学进行了表征,并将这些结果与细胞运动性相关联。排列需要24小时的血流暴露,但细胞在几分钟内就能对血流做出反应,并将其运动减少50%。尽管运动减慢,但肌动蛋白丝的周转速率增加了三倍,聚合状态下的总肌动蛋白百分比降低了34%,从而加速了汇合的内皮单层中单个细胞内的肌动蛋白丝重塑,使其达到静态条件下分散的未汇合细胞快速运动时所使用的水平。在时间上,血流刺激后不久丝状肌动蛋白的快速减少之前是肌动蛋白丝周转的增加,这表明肌动蛋白细胞骨架对剪切应力反应的最早阶段是细胞骨架的净解聚。然而,与静态细胞不同,在静态细胞中细胞运动性与丝周转速率呈正相关,与聚合肌动蛋白的量呈负相关,剪切应力刺激后增强的运动性与增强的肌动蛋白动力学的解耦支持了这样一种观点,即在这些条件下肌动蛋白重塑有利于细胞骨架重塑以实现形状改变而非运动。数小时后,运动性恢复到剪切应力前的水平,但在排列后许多细胞中的肌动蛋白重塑仍然高度动态,这表明细胞形状在持续优化。我们得出结论,剪切应力引发了一种细胞质肌动蛋白重塑反应,该反应用于内皮细胞形状改变而非整体细胞移位。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验