Albert C, Safrany S T, Bembenek M E, Reddy K M, Reddy K, Falck J, Bröcker M, Shears S B, Mayr G W
Universitäts-Krankenhaus Eppendorf, Institut für Physiologische Chemie, Abt. für Enzymchemie, Martinistr. 52, D-20246 Hamburg, Germany.
Biochem J. 1997 Oct 15;327 ( Pt 2)(Pt 2):553-60. doi: 10.1042/bj3270553.
Previous structural analyses of diphosphoinositol polyphosphates in biological systems have relied largely on NMR analysis. For example, in Dictyostelium discoideum, diphosphoinositol pentakisphosphate was determined by NMR to be 4- and/or 6-PPInsP5, and the bisdiphosphoinositol tetrakisphosphate was found to be 4, 5-bisPPInsP4 and/or 5,6-bisPPInsP4 [Laussmann, Eujen, Weisshuhn, Thiel and Vogel (1996) Biochem. J. 315, 715-720]. We now describe three recent technical developments to aid the analysis of these compounds, not just in Dictyostelium, but also in a wider range of biological systems: (i) improved resolution and sensitivity of detection of PPInsP5 isomers by microbore metal-dye-detection HPLC; (ii) the use of the enantiomerically specific properties of a rat hepatic diphosphatase; (iii) chemical synthesis of enantiomerically pure reference standards of all six possible PPInsP5 isomers. Thus we now demonstrate that the major PPInsP5 isomer in Dictyostelium is 6-PPInsP5. Similar findings obtained using the same synthetic standards have been published [Laussmann, Reddy, Reddy, Falck and Vogel (1997) Biochem. J. 322, 31-33]. In addition, we show that 10-25% of the Dictyostelium PPInsP5 pool is comprised of 5-PPInsP5. The biological significance of this new observation was reinforced by our demonstration that 5-PPInsP5 is the predominant PPInsP5 isomer in four different mammalian cell lines (FTC human thyroid cancer cells, Swiss 3T3 fibroblasts, Jurkat T-cells and Chinese hamster ovary cells). The fact that the cellular spectrum of diphosphoinositol polyphosphates varies across phylogenetic boundaries underscores the value of our technological developments for future determinations of the structures of this class of compounds in other systems.
以往对生物系统中二磷酸肌醇多磷酸的结构分析主要依赖于核磁共振(NMR)分析。例如,在盘基网柄菌中,通过核磁共振确定二磷酸肌醇五磷酸为4-和/或6-PPInsP5,且发现双二磷酸肌醇四磷酸为4,5-双PPInsP4和/或5,6-双PPInsP4 [劳斯曼、尤恩、魏斯胡恩、蒂尔和沃格尔(1996年)《生物化学杂志》315卷,715 - 720页]。我们现在描述三项最近的技术进展,以有助于分析这些化合物,不仅在盘基网柄菌中,而且在更广泛的生物系统中:(i)通过微径金属染料检测高效液相色谱法提高PPInsP5异构体检测的分辨率和灵敏度;(ii)利用大鼠肝脏二磷酸酶的对映体特异性特性;(iii)化学合成所有六种可能的PPInsP5异构体的对映体纯参考标准品。因此,我们现在证明盘基网柄菌中的主要PPInsP5异构体是6-PPInsP5。使用相同合成标准品获得的类似发现已发表[劳斯曼、雷迪、雷迪、法尔克和沃格尔(1997年)《生物化学杂志》322卷,31 - 33页]。此外,我们表明盘基网柄菌的PPInsP5库中有10 - 25%由5-PPInsP5组成。我们证明5-PPInsP5是四种不同哺乳动物细胞系(FTC人甲状腺癌细胞、瑞士3T3成纤维细胞、Jurkat T细胞和中国仓鼠卵巢细胞)中主要的PPInsP5异构体,这一新观察结果的生物学意义得到了加强。二磷酸肌醇多磷酸的细胞谱在系统发育界限上有所不同,这一事实强调了我们的技术进展对于未来在其他系统中确定这类化合物结构的价值。