Suppr超能文献

分子互补性I:生命起源与进化的互补性理论

Molecular complementarity I: the complementarity theory of the origin and evolution of life.

作者信息

Root-Bernstein R S, Dillon P F

机构信息

Department of Physiology, Michigan State University, East Lansing, Michigan, U.S.A.

出版信息

J Theor Biol. 1997 Oct 21;188(4):447-79. doi: 10.1006/jtbi.1997.0476.

Abstract

We assert that molecular complementarity is much more widespread than is commonly acknowledged in biological systems, if not actually ubiquitous. It creates the coupling necessary for non-equilibrium systems to form. It stabilizes aggregates against degradation, thereby increasing concentrations to levels adequate to foster the formation of prebiotic systems and represents the earliest form in which natural selection was manifested. Complementarity confers on all interacting parts of such systems in formation carrying capacity. RNA or DNA are not, therefore, necessary to the emergence of life, but represent specialized forms of complementary molecules adapted specifically to information storage and transmission. Non-genetic information exists in metabolic functions and probably preceded genetic information historically. Complementarity also provides the basis for homeostasis and buffering of such systems not only in a chemical, but also in structural and temporal terms. It provides a mechanism for understanding how new, emergent properties can arise, and a basis for the self-organization of systems. We demonstrate that such aggregates can have properties not predictable from their individual components, thus providing a means for understanding how new functions emerge during evolution. Selection is for modules rather than individual components. The formation of functional sub-systems that can then be integrated as modules greatly increases the probability of the emergence of life. The result of such modular evolution alters the standard view of evolution from a tree or bush-like image to an integrated network composed of alternating periods of integration (as molecules and molecular aggregates merge) and divergence (as molecules and aggregates undergo variations). This provides a mechanism for evolution by punctuated equilibria. Molecular complementarity puts strict limits on variations, however, preventing evolution from being random. The evolutionary, physiological and embryological consequences of this view of life are outlined, and various models and experiments described that further characterize it.

摘要

我们断言,分子互补性在生物系统中比通常所认识到的更为广泛,即便并非实际上无处不在。它创造了非平衡系统形成所需的耦合。它使聚集体稳定而不降解,从而将浓度提高到足以促进益生元系统形成的水平,并代表了自然选择最早表现出来的形式。互补性赋予正在形成的此类系统的所有相互作用部分承载能力。因此,RNA或DNA对于生命的出现并非必要,而是代表了专门适应信息存储和传递的互补分子形式。非遗传信息存在于代谢功能中,并且在历史上可能先于遗传信息出现。互补性不仅在化学方面,而且在结构和时间方面也为此类系统的稳态和缓冲提供了基础。它提供了一种机制,用于理解新的、涌现的特性如何产生,以及系统自我组织的基础。我们证明,此类聚集体可以具有无法从其单个组件预测的特性,从而提供了一种理解新功能在进化过程中如何出现的方法。选择的是模块而非单个组件。能够随后作为模块整合的功能子系统的形成极大地增加了生命出现的可能性。这种模块化进化的结果将进化的标准观点从树状或灌木状形象转变为由整合期(如分子和分子聚集体合并)和分歧期(如分子和聚集体发生变异)交替组成的综合网络。这为间断平衡进化提供了一种机制。然而,分子互补性对变异施加了严格限制,防止进化变得随机。概述了这种生命观的进化、生理和胚胎学后果,并描述了进一步表征它的各种模型和实验。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验