Suppr超能文献

Cytokines promote glomerular mesangial cell survival in vitro by stimulus-dependent inhibition of apoptosis.

作者信息

Mooney A, Jobson T, Bacon R, Kitamura M, Savill J

机构信息

Department of Medicine, University Hospital, Nottingham, United Kingdom.

出版信息

J Immunol. 1997 Oct 15;159(8):3949-60.

PMID:9378983
Abstract

Resolution of glomerular inflammation requires the removal of proliferating resident glomerular mesangial cells, but excessive loss of glomerular cells is a feature of postinflammatory scarring. Because apoptosis regulates mesangial cell number in glomerular inflammation, we have studied the exogenous control of apoptosis triggered in cultured mesangial cells by stimuli likely to be important in vivo. Apoptosis could be induced by serum deprivation to model decreased availability of survival factors, by etoposide as an example of DNA-damaging agents, by ligation of mesangial cell Fas, and by protein synthesis inhibition by cycloheximide. Insulin-like growth factor I (IGF-I), IGF-II, and basic fibroblast growth factor were each able to suppress apoptosis induced by serum deprivation, whereas TGF-beta 1, epidermal growth factor, and platelet-derived growth factor had no effect. IGF-I and IGF-II (but not basic fibroblast growth factor) were also able to protect cells from apoptosis induced by etoposide or cycloheximide. However, Fas-mediated apoptosis was resistant to suppression by all three cytokines. None of the cytokines tested caused a change in the levels of expression of Bcl-2, Bax, Bcl-x, or Bak proteins. The survival-promoting properties of serum-free medium conditioned by mesangial cells was abrogated by neutralizing IGF-I Ab. These experiments are the first to define cytokines that inhibit apoptosis and thereby promote survival of mesangial cells, and the data indicate a paracrine survival signaling role for IGF-I. Finally, the data show that Fas ligation can override cytokine survival signaling, emphasizing a candidate role for this molecule in the undesirable apoptotic loss of mesangial cells during the progression of glomerular scarring.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验