Suppr超能文献

多突触输入和水平连接在大鼠听觉皮层破伤风诱导的长时程增强产生中的重要性。

Importance of polysynaptic inputs and horizontal connectivity in the generation of tetanus-induced long-term potentiation in the rat auditory cortex.

作者信息

Kudoh M, Shibuki K

机构信息

Department of Neurophysiology, Brain Research Institute, Niigata University, Niigata 951, Japan.

出版信息

J Neurosci. 1997 Dec 15;17(24):9458-65. doi: 10.1523/JNEUROSCI.17-24-09458.1997.

Abstract

Supragranular pyramidal neurons in the adult rat auditory cortex (AC) show marked long-term potentiation (LTP) of population spikes after tetanic white matter stimulation (TS). For determination of whether this marked LTP is specific to AC, LTP in rat AC slices was compared with LTP in slices of the visual cortex (VC). The amplitude of TS-induced LTP in AC was twice that in VC. LTP of EPSPs was also studied with perforated patch or whole-cell recording. Although the amplitude of TS-induced LTP of EPSPs in AC was larger that in VC, no cortical difference was found in LTP elicited by low-frequency stimulation paired with current injection. Neocortical LTP is dependent on the activation of NMDA receptors, and induction of LTP requires postsynaptic depolarization for removal of Mg2+ blockade of NMDA receptors. The postsynaptic depolarization elicited by TS in supragranular pyramidal neurons in AC was significantly larger than that in VC. Cutting of supragranular horizontal connections resulted in a decrease in the depolarization amplitude in AC but an increase in the depolarization amplitude in VC. The cortical difference in TS-induced LTP was diminished in the slices in which horizontal connections in supragranular layers were cut. The estimated density of horizontal axon collaterals of supragranular pyramidal neurons in AC was approximately twice that in VC. These results strongly suggest that the marked polysynaptic and postsynaptic depolarization during TS and the resulting marked LTP in AC are attributed to well developed horizontal axon collaterals of supragranular pyramidal neurons in AC.

摘要

成年大鼠听觉皮层(AC)中的颗粒上层锥体神经元在强直白质刺激(TS)后表现出明显的群体峰电位长时程增强(LTP)。为了确定这种明显的LTP是否为AC所特有,将大鼠AC切片中的LTP与视觉皮层(VC)切片中的LTP进行了比较。TS诱导的AC中LTP的幅度是VC中的两倍。还使用穿孔膜片或全细胞记录研究了兴奋性突触后电位(EPSP)的LTP。尽管TS诱导的AC中EPSP的LTP幅度大于VC中的,但在低频刺激与电流注入配对引发的LTP中未发现皮层差异。新皮层LTP依赖于NMDA受体的激活,并且LTP的诱导需要突触后去极化以解除Mg2+对NMDA受体的阻断。TS在AC颗粒上层锥体神经元中引发的突触后去极化明显大于VC中的。切断颗粒上层水平连接导致AC中的去极化幅度降低,但VC中的去极化幅度增加。在切断颗粒上层水平连接的切片中,TS诱导的LTP的皮层差异减小。AC中颗粒上层锥体神经元水平轴突侧支的估计密度约为VC中的两倍。这些结果强烈表明,TS期间明显的多突触和突触后去极化以及AC中由此产生的明显LTP归因于AC中颗粒上层锥体神经元发育良好的水平轴突侧支。

相似文献

2
Long-term potentiation of Ca2+ signal in the rat auditory cortex.
Neurosci Res. 1999 Aug;34(3):187-97. doi: 10.1016/s0168-0102(99)00049-8.
3
Long-term potentiation of supragranular pyramidal outputs in the rat auditory cortex.
Exp Brain Res. 1996 Jun;110(1):21-7. doi: 10.1007/BF00241370.
8
LTP in the barrel cortex of adult rats.
Neuroreport. 1995 Nov 27;6(17):2297-300. doi: 10.1097/00001756-199511270-00007.
9
10
Long-term depression induced by local tetanic stimulation in the rat auditory cortex.
Brain Res. 2007 Aug 29;1166:20-8. doi: 10.1016/j.brainres.2007.06.049. Epub 2007 Jul 10.

引用本文的文献

1
The nonhuman primate neuroimaging and neuroanatomy project.
Neuroimage. 2021 Apr 1;229:117726. doi: 10.1016/j.neuroimage.2021.117726. Epub 2021 Jan 20.
2
Associative responses to visual shape stimuli in the mouse auditory cortex.
PLoS One. 2019 Oct 3;14(10):e0223242. doi: 10.1371/journal.pone.0223242. eCollection 2019.
3
Circuit-specific and neuronal subcellular-wide E-I balance in cortical pyramidal cells.
Sci Rep. 2018 Mar 5;8(1):3971. doi: 10.1038/s41598-018-22314-9.
4
Auditory cortical field coding long-lasting tonal offsets in mice.
Sci Rep. 2016 Sep 30;6:34421. doi: 10.1038/srep34421.
5
Optical imaging of plastic changes induced by fear conditioning in the auditory cortex.
Cogn Neurodyn. 2012 Feb;6(1):1-10. doi: 10.1007/s11571-011-9173-x. Epub 2011 Aug 30.
6
Heterosynaptic plasticity induced by intracellular tetanization in layer 2/3 pyramidal neurons in rat auditory cortex.
J Physiol. 2012 May 15;590(10):2253-71. doi: 10.1113/jphysiol.2012.228247. Epub 2012 Feb 27.
7
STDP in the Developing Sensory Neocortex.
Front Synaptic Neurosci. 2010 Jun 9;2:9. doi: 10.3389/fnsyn.2010.00009. eCollection 2010.
8
Normal hearing is required for the emergence of long-lasting inhibitory potentiation in cortex.
J Neurosci. 2010 Jan 6;30(1):331-41. doi: 10.1523/JNEUROSCI.4554-09.2010.
9
Hebbian reverberations in emotional memory micro circuits.
Front Neurosci. 2009 Sep 15;3(2):198-205. doi: 10.3389/neuro.01.027.2009. eCollection 2009 Sep.
10
Receptive field plasticity of area 17 visual cortical neurons of adult rats.
Exp Brain Res. 2009 Dec;199(3-4):401-10. doi: 10.1007/s00221-009-1992-1. Epub 2009 Sep 16.

本文引用的文献

1
Connections of the cerebral cortex; the albino rat; topography of the cortical areas.
J Comp Neurol. 1946 Apr;84:221-75. doi: 10.1002/cne.900840205.
2
RECEPTIVE FIELDS OF CELLS IN STRIATE CORTEX OF VERY YOUNG, VISUALLY INEXPERIENCED KITTENS.
J Neurophysiol. 1963 Nov;26:994-1002. doi: 10.1152/jn.1963.26.6.994.
3
SINGLE-CELL RESPONSES IN STRIATE CORTEX OF KITTENS DEPRIVED OF VISION IN ONE EYE.
J Neurophysiol. 1963 Nov;26:1003-17. doi: 10.1152/jn.1963.26.6.1003.
4
Long-term potentiation of supragranular pyramidal outputs in the rat auditory cortex.
Exp Brain Res. 1996 Jun;110(1):21-7. doi: 10.1007/BF00241370.
5
Thalamic modulation of high-frequency oscillating potentials in auditory cortex.
Nature. 1996 Sep 5;383(6595):78-81. doi: 10.1038/383078a0.
7
8
Short-term synaptic enhancement and long-term potentiation in neocortex.
Proc Natl Acad Sci U S A. 1996 Feb 6;93(3):1335-9. doi: 10.1073/pnas.93.3.1335.
9
Receptive-field plasticity in the adult auditory cortex induced by Hebbian covariance.
J Neurosci. 1996 Jan 15;16(2):861-75. doi: 10.1523/JNEUROSCI.16-02-00861.1996.
10
Synchronization of cortical activity and its putative role in information processing and learning.
Annu Rev Physiol. 1993;55:349-74. doi: 10.1146/annurev.ph.55.030193.002025.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验