Llacer J
EC Engineering Consultants, Los Gatos, California 95032, USA.
Med Phys. 1997 Nov;24(11):1751-64. doi: 10.1118/1.597961.
In this paper we present a new method of solving the inverse radiation treatment planning problem. The method is based on a Maximum Likelihood Estimator with dynamically changing penalization terms. The resulting Dynamically Penalized Likelihood (DPL) algorithm achieves a dose distribution of excellent uniformity in a tumor volume and a much lower dose in regions containing sensitive volumes. A simple model of a patient and of energy deposition has been used for the initial results presented: a two-dimensional computer generated phantom and monochromatic x rays, without scattering. Three two-dimensional problems are solved with the DPL algorithm, corresponding to different size and spatial relationships between the tumor and sensitive tissue volumes. The results show that the DPL algorithm is robust and flexible; it only requires moderate computation times and leads to promising solutions, even in rather difficult problems. The results encourage the extension of the present work to more realistic therapy situations.
在本文中,我们提出了一种解决逆向放射治疗计划问题的新方法。该方法基于具有动态变化惩罚项的最大似然估计器。由此产生的动态惩罚似然(DPL)算法在肿瘤体积内实现了极佳的剂量均匀性,并且在包含敏感组织体积的区域内剂量要低得多。为呈现初始结果,使用了一个简单的患者模型和能量沉积模型:一个二维计算机生成的体模和单色X射线,不考虑散射。用DPL算法解决了三个二维问题,对应于肿瘤与敏感组织体积之间不同的大小和空间关系。结果表明,DPL算法稳健且灵活;它只需要适度的计算时间,即使在相当困难的问题中也能得出有前景的解决方案。这些结果促使将目前的工作扩展到更实际的治疗情况。