Rigby A C, Baleja J D, Li L, Pedersen L G, Furie B C, Furie B
Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA.
Biochemistry. 1997 Dec 16;36(50):15677-84. doi: 10.1021/bi9718550.
Conantokin G is a gamma-carboxyglutamic acid- (Gla-) containing conotoxin isolated from the venom of the marine cone snail Conus geographus. This 17-residue polypeptide, which contains five gamma-carboxyglutamic acid residues, is a N-methyl-d-aspartate- (NMDA-) type glutamate receptor antagonist. To investigate the role of gamma-carboxyglutamic acid in the calcium-induced structural transition of conantokin G, we determined the three-dimensional structure of the conantokin G/Ca2+ complex by two-dimensional 1H NMR spectroscopy and compared it to the high-resolution structure of conantokin G in the absence of metal ions [Rigby et al. (1997) Biochemistry 36, 6906]. Complete resonance assignments were made by two dimensional 1H NMR spectroscopy at pH 5.6 in the presence of saturating amounts of Ca2+. Distance geometry and simulated annealing methods were used to derive 23 convergent structures from a set of 302 interproton distance restraints and two torsion angle measurements. A high-resolution structure, with the backbone root mean square deviation to the geometric average of the 23 structures of 0.6 +/- 0.1 A, contains a linear alpha-helix from Gla 3 to Lys 15. Gla residues 3, 7, 10, and 14 are aligned in a linear array on one face of the helix. A genetic algorithm was applied to determine the calcium positions in conantokin G, and the conantokin G/Ca2+ complex refined by molecular simulation. Upon binding of Ca2+ to gamma-carboxyglutamic acid, conantokin G undergoes a conformational transition from a distorted curvilinear 310 helix to a linear alpha-helix. Occupancy of the metal binding sites, defined by gamma-carboxyglutamic acids, results in formation of a calcium-carboxylate network that linearizes the helix and exposes the hydrophobic amino acids on the opposite face of the helix.
芋螺毒素G是一种从地纹芋螺毒液中分离出的含γ-羧基谷氨酸(Gla)的芋螺毒素。这种由17个氨基酸残基组成的多肽含有5个γ-羧基谷氨酸残基,是一种N-甲基-D-天冬氨酸(NMDA)型谷氨酸受体拮抗剂。为了研究γ-羧基谷氨酸在钙诱导的芋螺毒素G结构转变中的作用,我们通过二维1H NMR光谱法测定了芋螺毒素G/Ca2+复合物的三维结构,并将其与无金属离子时芋螺毒素G的高分辨率结构进行了比较[Rigby等人(1997年),《生物化学》36,6906]。在pH 5.6且存在饱和量Ca2+的情况下,通过二维1H NMR光谱法完成了完整的共振归属。利用距离几何和模拟退火方法,从一组302个质子间距离约束和两个扭转角测量值中推导出23个收敛结构。一个高分辨率结构,其主链与23个结构的几何平均值的均方根偏差为0.6±0.1 Å,包含一个从Gla 3到Lys 15的线性α-螺旋。Gla残基3、7、10和14在螺旋的一个面上呈线性排列。应用遗传算法确定芋螺毒素G中的钙位置,并通过分子模拟对芋螺毒素G/Ca2+复合物进行优化。当Ca2+与γ-羧基谷氨酸结合时,芋螺毒素G经历从扭曲的曲线型310螺旋到线性α-螺旋的构象转变。由γ-羧基谷氨酸定义的金属结合位点的占据导致形成一个钙-羧酸盐网络,该网络使螺旋线性化并使螺旋相对面上的疏水氨基酸暴露出来。