Suppr超能文献

大麦根际中lux标记的荧光假单胞菌报告菌的代谢活性分布及磷饥饿反应

Distribution of metabolic activity and phosphate starvation response of lux-tagged Pseudomonas fluorescens reporter bacteria in the barley rhizosphere.

作者信息

Kragelund L, Hosbond C, Nybroe O

机构信息

Department of Ecology and Molecular Biology, Royal Veterinary and Agricultural University, Frederiksberg, Denmark.

出版信息

Appl Environ Microbiol. 1997 Dec;63(12):4920-8. doi: 10.1128/aem.63.12.4920-4928.1997.

Abstract

The purpose of this study was to determine the metabolic activity of Pseudomonas fluorescens DF57 in the barley rhizosphere and to assess whether sufficient phosphate was available to the bacterium. Hence, two DF57 reporter strains carrying chromosomal luxAB gene fusions were introduced into the rhizosphere. Strain DF57-40E7 expressed luxAB constitutively, making bioluminescence dependent upon the metabolic activity of the cells under defined assay conditions. The DF57-P2 reporter strain responded to phosphate limitation, and the luxAB gene fusion was controlled by a promoter containing regulatory sequences characteristic of members of the phosphate (Pho) regulon. DF57 generally had higher metabolic activity in a gnotobiotic rhizosphere than in the corresponding bulk soil. Within the rhizosphere the distribution of metabolic activity along the root differed between the rhizosphere soil and the rhizoplane, suggesting that growth conditions may differ between these two habitats. The DF57-P2 reporter strain encountered phosphate limitation in a gnotobiotic rhizosphere but not in a natural rhizosphere. This difference in phosphate availability seemed to be due to the indigenous microbial population, as DF57-P2 did not report phosphate limitation when established in the rhizosphere of plants in sterilized soil amended with indigenous microorganisms.

摘要

本研究的目的是确定荧光假单胞菌DF57在大麦根际的代谢活性,并评估该细菌是否有足够的磷酸盐可用。因此,将两个携带染色体luxAB基因融合体的DF57报告菌株引入根际。DF57-40E7菌株组成型表达luxAB,在特定测定条件下,生物发光依赖于细胞的代谢活性。DF57-P2报告菌株对磷酸盐限制有反应,luxAB基因融合受一个含有磷酸盐(Pho)调节子成员特征性调控序列的启动子控制。一般来说,DF57在无菌根际的代谢活性高于相应的土体土壤。在根际内,根际土壤和根表之间沿根的代谢活性分布不同,这表明这两个生境的生长条件可能不同。DF57-P2报告菌株在无菌根际遇到磷酸盐限制,但在天然根际未遇到。磷酸盐可用性的这种差异似乎归因于本地微生物群落,因为当DF57-P2在添加了本地微生物的灭菌土壤中的植物根际定殖时,并未报告磷酸盐限制。

相似文献

3
Carbon limitation induces sigma(S)-dependent gene expression in Pseudomonas fluorescens in soil.
Appl Environ Microbiol. 2001 Aug;67(8):3363-70. doi: 10.1128/AEM.67.8.3363-3370.2001.
4
Oxygen-sensing reporter strain of Pseudomonas fluorescens for monitoring the distribution of low-oxygen habitats in soil.
Appl Environ Microbiol. 1999 Sep;65(9):4085-93. doi: 10.1128/AEM.65.9.4085-4093.1999.
5
Whole-cell bacterial sensors for the monitoring of phosphate bioavailability.
J Microbiol Methods. 2003 Oct;55(1):221-9. doi: 10.1016/s0167-7012(03)00164-7.
7
Effective dose of a microbial inoculant is one to four cells in the rhizosphere.
Can J Microbiol. 2002 Oct;48(10):940-4. doi: 10.1139/w02-088.

引用本文的文献

1
Transcriptomic Responses of to Root Exudates Reflect Its Capacity to Colonize Maize and Common Bean in an Intercropping System.
Front Microbiol. 2021 Oct 28;12:740818. doi: 10.3389/fmicb.2021.740818. eCollection 2021.
2
Microbial whole-cell biosensors: Current applications, challenges, and future perspectives.
Biosens Bioelectron. 2021 Nov 1;191:113359. doi: 10.1016/j.bios.2021.113359. Epub 2021 May 23.
3
Design and Construction of a Whole Cell Bacterial 4-Hydroxyphenylacetic Acid and 2-Phenylacetic Acid Bioassay.
Front Bioeng Biotechnol. 2015 Jun 16;3:88. doi: 10.3389/fbioe.2015.00088. eCollection 2015.
6
Wave-like distribution patterns of gfp-marked Pseudomonas fluorescens along roots of wheat plants grown in two soils.
Microb Ecol. 2008 Apr;55(3):466-75. doi: 10.1007/s00248-007-9292-4. Epub 2007 Oct 13.
7
Two novel bacterial biosensors for detection of nitrate availability in the rhizosphere.
Appl Environ Microbiol. 2005 Dec;71(12):8537-47. doi: 10.1128/AEM.71.12.8537-8547.2005.
8
Importance of organosulfur utilization for survival of Pseudomonas putida in soil and rhizosphere.
Appl Environ Microbiol. 2005 Nov;71(11):6571-7. doi: 10.1128/AEM.71.11.6571-6577.2005.
9
Detection of and response to signals involved in host-microbe interactions by plant-associated bacteria.
Microbiol Mol Biol Rev. 2005 Mar;69(1):155-94. doi: 10.1128/MMBR.69.1.155-194.2005.
10
Carbon limitation induces sigma(S)-dependent gene expression in Pseudomonas fluorescens in soil.
Appl Environ Microbiol. 2001 Aug;67(8):3363-70. doi: 10.1128/AEM.67.8.3363-3370.2001.

本文引用的文献

1
Root Exudate-Induced Promoter Activity in Pseudomonas fluorescens Mutants in the Wheat Rhizosphere.
Appl Environ Microbiol. 1995 Mar;61(3):890-8. doi: 10.1128/aem.61.3.890-898.1995.
3
A biological sensor for iron available to bacteria in their habitats on plant surfaces.
Appl Environ Microbiol. 1994 Jun;60(6):1934-41. doi: 10.1128/aem.60.6.1934-1941.1994.
4
Microgradients of microbial oxygen consumption in a barley rhizosphere model system.
Appl Environ Microbiol. 1993 Feb;59(2):431-7. doi: 10.1128/aem.59.2.431-437.1993.
5
Detection of a single genetically modified bacterial cell in soil by using charge coupled device-enhanced microscopy.
Appl Environ Microbiol. 1992 Aug;58(8):2444-8. doi: 10.1128/aem.58.8.2444-2448.1992.
6
Genetic and Phenotypic Diversity of Bacillus polymyxa in Soil and in the Wheat Rhizosphere.
Appl Environ Microbiol. 1992 Jun;58(6):1894-903. doi: 10.1128/aem.58.6.1894-1903.1992.
7
Use of Bioluminescence Markers To Detect Pseudomonas spp. in the Rhizosphere.
Appl Environ Microbiol. 1991 Dec;57(12):3641-4. doi: 10.1128/aem.57.12.3641-3644.1991.
8
Metabolic status of bacteria and fungi in the rhizosphere of ponderosa pine seedlings.
Appl Environ Microbiol. 1991 Apr;57(4):1161-7. doi: 10.1128/aem.57.4.1161-1167.1991.
9
Characterization of Root Surface and Endorhizosphere Pseudomonads in Relation to Their Colonization of Roots.
Appl Environ Microbiol. 1990 Aug;56(8):2462-2470. doi: 10.1128/aem.56.8.2462-2470.1990.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验