Ning S, Trisler K, Wessels B W, Knox S J
Department of Radiation Oncology, Stanford University Medical Center, California 94305-5105, USA.
Cancer. 1997 Dec 15;80(12 Suppl):2519-28. doi: 10.1002/(sici)1097-0142(19971215)80:12+<2519::aid-cncr26>3.3.co;2-t.
Previous studies suggest that the radiobiologic characteristics of in vitro survival curves are important determinants of the response of tumors to both conventional radiotherapy and radioimmunotherapy (RIT). The purpose of this study was to elucidate the relationship between in vitro radiation survival curve parameters and the relative sensitivity of tumor to RIT, exponentially decreasing low dose rate (ED LDR) irradiation and conventional high dose rate (HDR) fractionated external beam radiotherapy.
Two human renal cell carcinoma cell lines, Caki-1 and A498, were used in vitro and nude mouse xenograft studies. HDR external beam gamma irradiation (dose rate, 430 centigray [cGy]/minute) and ED LDR irradiation (initial dose rate, 22-25 cGy/hour) were performed with a cesium-137 (137Cs) gamma irradiator. RIT was carried out with yttrium-90 (90Y-labeled monoclonal antibody NR-LU-10, and the absorbed radiation doses were calculated by medical internal radiation dose methodology. A clonogenic assay was used to generate radiation survival curves, and a computer FIT program was used to calculate the radiobiologic parameters. The antitumor efficacy of the different treatments was compared in vivo using a tumor regrowth delay assay in these two tumor xenograft models.
The radiation survival curves showed that the Caki-1 cell line was more sensitive to both HDR and ED LDR irradiation than A498 in vitro. The Caki-1 cell line, compared with A498, had a larger alpha (0.39 vs. 0.15 Gy following HDR and 0.32 vs. 0.21 Gy following ED LDR) and alpha-to-beta ratio (6.92 vs. 2.60 Gy for HDR and 40.0 vs. 19.2 Gy for ED LDR), a smaller n number (5.13 vs. 23 for HDR and 1.16 vs. 3.53 for ED LDR), a lower quasi-threshold dose (Dq) (1.60 vs. 3.15 Gy for HDR and 0.35 vs. 1.76 Gy for ED LDR), and a lower surviving fraction at 2 Gy (SF2) (0.37 vs. 0.60 for HDR and 0.51 vs. 0.61 for ED LDR), suggesting that Caki-1, compared with A498, had a steep initial slope and a small shoulder. The final slope represented by the beta value and D0 dose (the dose (Gy) required to reduce the fraction of surviving cells of 37% of its previous value in the exponential region of the survival curves) did not vary significantly between these two cell lines at either HDR or ED LDR irradiation. Tumor volume doubling times were 4.0 +/- 1.5 days for Caki-1 and 4.2 +/- 1.8 days for A498 tumor xenografts. One hundred microCi/50 microg of 90Y-labeled, isotype-matched irrelevant monoclonal antibody CCOO16-3 produced a tumor growth delay time (TGD) of 2.1 days in Caki-1 tumors but had no effect on A498 tumors (P < 0.05). RIT with 100 microCi of 90Y-NR-LU-10 resulted in a TGD of 4.8 days for Caki-1 tumors, whereas 100 microCi and 150 microCi of 90Y-NR-LU-10 produced a TGD of 1.9 and 2.7 days for A498 tumors, respectively. Estimated absorbed doses were 21.9 Gy in Caki-1 tumors treated with 100 microCi of 90Y-NR-LU-10 and 14.5 Gy and 21.8 Gy in A498 tumors treated with 100 microCi and 150 microCi of 90Y-NR-LU-10, respectively. The weighted normal tissue absorbed doses were 7.4 Gy for Caki-1 tumor-bearing mice and 9.0 Gy for A498 tumor-bearing mice (P > 0.05). To compare the responses of Caki-1 and A498 xenografts to RIT with external beam ED LDR and HDR irradiation, tumor-bearing mice were treated with equivalent doses (20-22 Gy) of 1) RIT with 90Y-NR-LU-10 (100 microCi for Caki-1 and 150 microCi for A498), 2) continuous ED LDR 137Cs irradiation with a initial dose rate of 22 cGy/hour, or 3) HDR X-irradiation (2 Gy x 10 fractions in 2 weeks). The TGDs produced by RIT, ED LDR, and HDR were 5.3, 9.7, and 8.3 days for Caki-1 and 2.7, 5.1, and 5.8 days for A498. The relative efficacy of RIT in these xenograft models correlated well with the radiobiologic parameters (i.e., the size of the initial slope and shoulder) of in vitro survival curves following HDR and ED LDR irradiation in these cell lines. (ABSTRACT TRUNCATED)
以往研究表明,体外存活曲线的放射生物学特性是肿瘤对传统放疗和放射免疫疗法(RIT)反应的重要决定因素。本研究的目的是阐明体外放射存活曲线参数与肿瘤对RIT、指数递减低剂量率(ED LDR)照射和传统高剂量率(HDR)分割外照射放疗的相对敏感性之间的关系。
在体外和裸鼠异种移植研究中使用了两种人肾癌细胞系Caki-1和A498。用铯-137(137Cs)γ射线辐照器进行HDR外照射γ射线照射(剂量率,430厘戈瑞[cGy]/分钟)和ED LDR照射(初始剂量率,22 - 25 cGy/小时)。用钇-90(90Y)标记的单克隆抗体NR-LU-10进行RIT,并通过医学内照射剂量方法计算吸收辐射剂量。采用克隆形成试验生成放射存活曲线,并使用计算机拟合程序计算放射生物学参数。在这两种肿瘤异种移植模型中,使用肿瘤生长延迟试验在体内比较不同治疗方法的抗肿瘤疗效。
放射存活曲线显示,在体外,Caki-1细胞系对HDR和ED LDR照射均比A498更敏感。与A498相比,Caki-1细胞系具有更大的α值(HDR后为0.39对0.15 Gy,ED LDR后为0.32对0.21 Gy)和α/β比值(HDR时为6.92对2.60 Gy,ED LDR时为40.0对19.2 Gy),更小的n值(HDR时为5.13对23,ED LDR时为1.16对3.53),更低的准阈值剂量(Dq)(HDR时为1.60对3.15 Gy,ED LDR时为0.35对1.76 Gy),以及在2 Gy时更低的存活分数(SF2)(HDR时为0.37对0.60,ED LDR时为0.51对0.61),这表明与A498相比,Caki-1具有更陡的初始斜率和更小的肩部。在HDR或ED LDR照射下,这两种细胞系之间由β值和D0剂量(在存活曲线的指数区域将存活细胞分数降低其先前值的37%所需的剂量(Gy))表示的最终斜率没有显著差异。Caki-1肿瘤异种移植的肿瘤体积倍增时间为4.0±1.5天,A498肿瘤异种移植的为4.2±1.8天。100微居里/50微克的90Y标记的、同型匹配的无关单克隆抗体CCOO16 - 3在Caki-1肿瘤中产生了2.1天的肿瘤生长延迟时间(TGD),但对A498肿瘤没有影响(P < 0.05)。用100微居里的90Y-NR-LU-10进行RIT导致Caki-1肿瘤的TGD为4.8天,而100微居里和150微居里的90Y-NR-LU-10分别使A498肿瘤的TGD为1.9天和2.7天。用100微居里的90Y-NR-LU-10治疗的Caki-1肿瘤的估计吸收剂量为21.9 Gy,用100微居里和150微居里的90Y-NR-LU-10治疗的A498肿瘤的估计吸收剂量分别为14.5 Gy和21.8 Gy。荷Caki-1肿瘤小鼠的加权正常组织吸收剂量为7.4 Gy,荷A498肿瘤小鼠的为9.0 Gy(P > 0.05)。为了比较Caki-1和A498异种移植对RIT与外照射ED LDR和HDR照射的反应,对荷瘤小鼠用等效剂量(20 - 22 Gy)的以下方法进行治疗:1)用90Y-NR-LU-10进行RIT(Caki-1用100微居里,A498用150微居里),2)以22 cGy/小时的初始剂量率进行连续ED LDR 137Cs照射,或3)HDR X射线照射(2周内2 Gy×10次分割)。RIT、ED LDR和HDR产生的TGD对于Caki-1分别为5.3天、9.7天和8.3天,对于A498分别为2.7天、5.1天和5.8天。在这些异种移植模型中,RIT的相对疗效与这些细胞系在HDR和ED LDR照射后体外存活曲线的放射生物学参数(即初始斜率和肩部的大小)密切相关。(摘要截断)