Suppr超能文献

细菌质粒的滚环复制

Rolling-circle replication of bacterial plasmids.

作者信息

Khan S A

机构信息

Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pennsylvania 15261, USA.

出版信息

Microbiol Mol Biol Rev. 1997 Dec;61(4):442-55. doi: 10.1128/mmbr.61.4.442-455.1997.

Abstract

Many bacterial plasmids replicate by a rolling-circle (RC) mechanism. Their replication properties have many similarities to as well as significant differences from those of single-stranded DNA (ssDNA) coliphages, which also replicate by an RC mechanism. Studies on a large number of RC plasmids have revealed that they fall into several families based on homology in their initiator proteins and leading-strand origins. The leading-strand origins contain distinct sequences that are required for binding and nicking by the Rep proteins. Leading-strand origins also contain domains that are required for the initiation and termination of replication. RC plasmids generate ssDNA intermediates during replication, since their lagging-strand synthesis does not usually initiate until the leading strand has been almost fully synthesized. The leading- and lagging-strand origins are distinct, and the displaced leading-strand DNA is converted to the double-stranded form by using solely the host proteins. The Rep proteins encoded by RC plasmids contain specific domains that are involved in their origin binding and nicking activities. The replication and copy number of RC plasmids, in general, are regulated at the level of synthesis of their Rep proteins, which are usually rate limiting for replication. Some RC Rep proteins are known to be inactivated after supporting one round of replication. A number of in vitro replication systems have been developed for RC plasmids and have provided insight into the mechanism of plasmid RC replication.

摘要

许多细菌质粒通过滚环(RC)机制进行复制。它们的复制特性与同样通过RC机制复制的单链DNA(ssDNA)噬菌体有许多相似之处,但也存在显著差异。对大量RC质粒的研究表明,根据其起始蛋白和前导链起始位点的同源性,它们可分为几个家族。前导链起始位点包含Rep蛋白结合和切口所需的独特序列。前导链起始位点还包含复制起始和终止所需的结构域。RC质粒在复制过程中产生单链DNA中间体,因为其后随链合成通常直到前导链几乎完全合成后才开始。前导链和后随链起始位点不同,被置换的前导链DNA仅通过宿主蛋白转化为双链形式。RC质粒编码的Rep蛋白包含参与其起始位点结合和切口活性的特定结构域。一般来说,RC质粒的复制和拷贝数在其Rep蛋白的合成水平上受到调控,而Rep蛋白通常是复制的限速因素。已知一些RC Rep蛋白在支持一轮复制后会失活。已经开发了许多用于RC质粒的体外复制系统,并为质粒RC复制机制提供了深入了解。

相似文献

1
Rolling-circle replication of bacterial plasmids.
Microbiol Mol Biol Rev. 1997 Dec;61(4):442-55. doi: 10.1128/mmbr.61.4.442-455.1997.
2
DNA-protein interactions during the initiation and termination of plasmid pT181 rolling-circle replication.
Prog Nucleic Acid Res Mol Biol. 2003;75:113-37. doi: 10.1016/s0079-6603(03)75004-1.
3
Plasmid rolling-circle replication: highlights of two decades of research.
Plasmid. 2005 Mar;53(2):126-36. doi: 10.1016/j.plasmid.2004.12.008. Epub 2005 Jan 22.
4
Sequence requirements for the termination of rolling-circle replication of plasmid pT181.
Mol Microbiol. 1997 May;24(3):535-44. doi: 10.1046/j.1365-2958.1997.3641730.x.
5
Lagging strand replication of rolling-circle plasmids in Streptomyces lividans: an RNA polymerase-independent primer synthesis.
Arch Microbiol. 2004 Apr;181(4):305-13. doi: 10.1007/s00203-004-0656-6. Epub 2004 Mar 9.
6
Plasmid rolling-circle replication: recent developments.
Mol Microbiol. 2000 Aug;37(3):477-84. doi: 10.1046/j.1365-2958.2000.02001.x.
10
Rolling circle-replicating plasmids from gram-positive and gram-negative bacteria: a wall falls.
Mol Microbiol. 1993 May;8(5):789-96. doi: 10.1111/j.1365-2958.1993.tb01625.x.

引用本文的文献

2
Unwinding of a eukaryotic origin of replication visualized by cryo-EM.
Nat Struct Mol Biol. 2024 Aug;31(8):1265-1276. doi: 10.1038/s41594-024-01280-z. Epub 2024 May 17.
3
A pathogenicity locus of Streptococcus gallolyticus subspecies gallolyticus.
Sci Rep. 2023 Apr 18;13(1):6291. doi: 10.1038/s41598-023-33178-z.
4
Exploration of DNA processing features unravels novel properties of ICE conjugation in Gram-positive bacteria.
Nucleic Acids Res. 2022 Aug 12;50(14):8127-8142. doi: 10.1093/nar/gkac607.
5
Plasmid-Based Gene Expression Systems for Lactic Acid Bacteria: A Review.
Microorganisms. 2022 May 31;10(6):1132. doi: 10.3390/microorganisms10061132.
6
Adaptation by Type III CRISPR-Cas Systems: Breakthrough Findings and Open Questions.
Front Microbiol. 2022 Apr 14;13:876174. doi: 10.3389/fmicb.2022.876174. eCollection 2022.
7
Antimicrobial Resistance, Biofilm Formation, and Virulence Genes in Species from Small Backyard Chicken Flocks.
Antibiotics (Basel). 2022 Mar 13;11(3):380. doi: 10.3390/antibiotics11030380.
8
Unique properties of spacer acquisition by the type III-A CRISPR-Cas system.
Nucleic Acids Res. 2022 Feb 22;50(3):1562-1582. doi: 10.1093/nar/gkab1193.
9
Non-cationic Material Design for Nucleic Acid Delivery.
Adv Ther (Weinh). 2020 Mar;3(3). doi: 10.1002/adtp.201900206. Epub 2020 Feb 13.
10
Plasmid Transfer by Conjugation in Gram-Negative Bacteria: From the Cellular to the Community Level.
Genes (Basel). 2020 Oct 22;11(11):1239. doi: 10.3390/genes11111239.

本文引用的文献

1
Identification of the Minimal Replicon of Lactococcus lactis subsp. lactis UC317 Plasmid pCI305.
Appl Environ Microbiol. 1990 Jan;56(1):202-9. doi: 10.1128/aem.56.1.202-209.1990.
4
5
Sequence requirements for the termination of rolling-circle replication of plasmid pT181.
Mol Microbiol. 1997 May;24(3):535-44. doi: 10.1046/j.1365-2958.1997.3641730.x.
10
Two related rolling circle replication plasmids from salt-tolerant bacteria.
Plasmid. 1996 Nov;36(3):191-9. doi: 10.1006/plas.1996.0046.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验