Suppr超能文献

Genetic contribution of the endothelial constitutive nitric oxide synthase gene to plasma nitric oxide levels.

作者信息

Wang X L, Mahaney M C, Sim A S, Wang J, Wang J, Blangero J, Almasy L, Badenhop R B, Wilcken D E

机构信息

Department of Cardiovascular Medicine, Prince Henry Hospital, Little Bay, NSW, Australia.

出版信息

Arterioscler Thromb Vasc Biol. 1997 Nov;17(11):3147-53. doi: 10.1161/01.atv.17.11.3147.

Abstract

Nitric oxide (NO) has an important physiological role in regulating vascular tone and is also relevant to many pathological processes including hypertension and atherosclerosis. Endothelial constitutive nitric oxide synthase (ecNOS) is the key enzyme in determining basal vascular wall NO production. We used a combination of maximum-likelihood-based statistical genetic methods to explore the contributions of the ecNOS gene and other unmeasured genes to basal NO production measured by its metabolites (NOx: nitrite and nitrate) in 428 members of 108 nuclear families. Our initial quantitative genetic analysis estimated that approximately 30% of the variance in fasting NOx levels is due to genes (chi 2(1) = 16.04, P = .000062). Complex segregation analysis detected the effects of both a single locus and residual polygenes on NOx levels, and measured genotype analysis showed that plasma NOx levels in those homozygous for the rare allele (64.9 +/- 7.8 mumol/L) were significantly higher (P = .000242) than those homozygous for the common allele (30.2 +/- 3.1 mumol/L). The results of the variance component linkage analysis were consistent with linkage of a quantitative trait locus in or near the ecNOS gene to variation in plasma NOx levels (P = .0066). While many environmental factors have been shown to alter transiently plasma NOx levels, our study is the first to identify a substantial effect of the ecNOS locus on the variance of plasma NOx, i.e. basal NO production. This finding may be relevant to atherogenesis and NO-related disorders.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验