Heinzl H, Kaider A
Department of Medical Computer Sciences, University of Vienna, Austria.
Comput Methods Programs Biomed. 1997 Nov;54(3):201-8. doi: 10.1016/s0169-2607(97)00043-6.
The Cox proportional hazards model is the most popular model for the analysis of survival data. The use of cubic spline functions allows investigation of non-linear effects of continuous covariates and flexible assessment of time-by-covariate interactions. Two main advantages are provided--no particular functional form has to be specified and standard computer software packages like SAS or BMDP can be used. A SAS macro which implements the method is presented.
Cox比例风险模型是用于生存数据分析的最常用模型。使用三次样条函数可以研究连续协变量的非线性效应,并灵活评估时间与协变量的交互作用。该方法具有两个主要优点——无需指定特定的函数形式,并且可以使用诸如SAS或BMDP等标准计算机软件包。本文给出了一个实现该方法的SAS宏。