Jing N, Gao X, Rando R F, Hogan M E
Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.
J Biomol Struct Dyn. 1997 Dec;15(3):573-85. doi: 10.1080/07391102.1997.10508967.
Spectroscopic, thermal denaturation and kinetic studies have revealed that DNA oligonucleotides 5'-d(GGGTGGGTGGGTGGGT) (T30695) and 5'-d(GTGGTGGGTGGGTGGGT) (T30177) from extremely stable intramolecular G-tetrads via a two-step process that involves the binding of one K+ ion to a central pair of G-quartets and two additional K+ ions, presumably, to the loops (Jing et al., (1997) Biochemistry in press). In that these oligonucleotides are potent HIV-1 inhibitors and among the most active HIV-1 integrase inhibitors yet identified, we have sought to further characterize the K(+)-induced folding process for the purpose of rational chemical modification of these anti-HIV agents. Our NMR investigation demonstrates that in the presence of Li+ ions, T30695 forms an unimolecular tetrad fold, stabilized by a pair of syn-anti-syn-anti G-quartets comprising a central core. The NMR spectrum of T30695 as a function of K+ titration reveals a well-defined transition that saturates upon addition of three K+ ions per oligomer. During this process, the initial Li(+)-dependent G-quartet structure converts into a highly symmetrical, stable form (the NMR detected melting transition temperature is increased by approximately 20 degrees C). The conformation of the G-quartet core remains unchanged, while the loosely structured loop residues become organized in a fashion which is stabilized by K+ ion binding and by interactions with the core. To explain these data, we propose a model wherein K+ binding to the loops induces structural rearrangement, to yield a planar array of loop bases in proximity to the underlying G-quartets. By reference to closely related homologues, which lack activity as an HIV-1 or integrase inhibitor, the possibility is discussed that this ion-coordinated loop structure is crucial to the biological activity of T30695.
光谱学、热变性和动力学研究表明,来自极稳定分子内G-四联体的DNA寡核苷酸5'-d(GGGTGGGTGGGTGGGT) (T30695) 和5'-d(GTGGTGGGTGGGTGGGT) (T30177) 是通过两步过程形成的,该过程涉及一个K+离子与一对中央G-四重体结合,以及另外两个K+离子(可能是与环结合)(Jing等人,(1997) Biochemistry即将发表)。鉴于这些寡核苷酸是有效的HIV-1抑制剂,并且是迄今已鉴定的最具活性的HIV-1整合酶抑制剂之一,我们试图进一步表征K(+)诱导的折叠过程,以便对这些抗HIV药物进行合理的化学修饰。我们的NMR研究表明,在Li+离子存在下,T30695形成单分子四重体折叠,由包含中央核心的一对顺式-反式-顺式-反式G-四重体稳定。T30695的NMR谱作为K+滴定的函数显示出明确的转变,在每个寡聚物添加三个K+离子后达到饱和。在此过程中,最初依赖Li(+)的G-四重体结构转变为高度对称、稳定的形式(NMR检测到的解链转变温度提高了约20℃)。G-四重体核心的构象保持不变,而结构松散的环残基以一种由K+离子结合和与核心的相互作用稳定的方式组织起来。为了解释这些数据,我们提出了一个模型,其中K+与环的结合诱导结构重排,以产生与下面的G-四重体相邻的环碱基平面阵列。通过参考缺乏作为HIV-1或整合酶抑制剂活性的密切相关同源物,讨论了这种离子配位环结构对T30695生物活性至关重要的可能性。