Suppr超能文献

RNA聚合酶I促进的HIS4表达产生无帽、多聚腺苷酸化的mRNA,其在酿酒酵母中不稳定且翻译效率低下。

RNA polymerase I-promoted HIS4 expression yields uncapped, polyadenylated mRNA that is unstable and inefficiently translated in Saccharomyces cerevisiae.

作者信息

Lo H J, Huang H K, Donahue T F

机构信息

Department of Biology, Indiana University, Bloomington 47405, USA.

出版信息

Mol Cell Biol. 1998 Feb;18(2):665-75. doi: 10.1128/MCB.18.2.665.

Abstract

The HIS4 gene in Saccharomyces cerevisiae was put under the transcriptional control of RNA polymerase I to determine the in vivo consequences on mRNA processing and gene expression. This gene, referred to as rhis4, was substituted for the normal HIS4 gene on chromosome III. The rhis4 gene transcribes two mRNAs, of which each initiates at the polymerase (pol) I transcription initiation site. One transcript, rhis4s, is similar in size to the wild-type HIS4 mRNA. Its 3' end maps to the HIS4 3' noncoding region, and it is polyadenylated. The second transcript, rhis4l, is bicistronic. It encodes the HIS4 coding region and a second open reading frame, YCL184, that is located downstream of the HIS4 gene and is predicted to be transcribed in the same direction as HIS4 on chromosome III. The 3' end of rhis4l maps to the predicted 3' end of the YCL184 gene and is also polyadenylated. Based on in vivo labeling experiments, the rhis4 gene appears to be more actively transcribed than the wild-type HIS4 gene despite the near equivalence of the steady-state levels of mRNAs produced from each gene. This finding indicated that rhis4 mRNAs are rapidly degraded, presumably due to the lack of a cap structure at the 5' end of the mRNA. Consistent with this interpretation, a mutant form of XRN1, which encodes a 5'-3' exonuclease, was identified as an extragenic suppressor that increases the half-life of rhis4 mRNA, leading to a 10-fold increase in steady-state mRNA levels compared to the wild-type HIS4 mRNA level. This increase is dependent on pol I transcription. Immunoprecipitation by anticap antiserum suggests that the majority of rhis4 mRNA produced is capless. In addition, we quantitated the level of His4 protein in a rhis4 xrn1delta genetic background. This analysis indicates that capless mRNA is translated at less than 10% of the level of translation of capped HIS4 mRNA. Our data indicate that polyadenylation of mRNA in yeast occurs despite HIS4 being transcribed by RNA polymerase I, and the 5' cap confers stability to mRNA and affords the ability of mRNA to be translated efficiently in vivo.

摘要

将酿酒酵母中的HIS4基因置于RNA聚合酶I的转录控制之下,以确定其对mRNA加工和基因表达的体内影响。这个基因被称为rhis4,它取代了III号染色体上的正常HIS4基因。rhis4基因转录两种mRNA,每种mRNA都在聚合酶(pol)I转录起始位点起始。一种转录本rhis4s,其大小与野生型HIS4 mRNA相似。它的3'末端定位于HIS4的3'非编码区,并且是多聚腺苷酸化的。第二种转录本rhis4l是双顺反子的。它编码HIS4编码区和第二个开放阅读框YCL184,YCL184位于HIS4基因下游,预计与III号染色体上的HIS4转录方向相同。rhis4l的3'末端定位于YCL184基因的预测3'末端,并且也是多聚腺苷酸化的。基于体内标记实验,尽管每个基因产生的mRNA稳态水平几乎相等,但rhis4基因似乎比野生型HIS4基因转录更活跃。这一发现表明rhis4 mRNA迅速降解,推测是由于mRNA 5'末端缺乏帽结构。与这一解释一致,编码5'-3'核酸外切酶的XRN1突变形式被鉴定为一种基因外抑制因子,它增加了rhis4 mRNA的半衰期,与野生型HIS4 mRNA水平相比,稳态mRNA水平增加了10倍。这种增加依赖于pol I转录。抗帽抗血清的免疫沉淀表明,产生的大多数rhis4 mRNA是无帽的。此外我们在rhis4 xrn1δ遗传背景下对His4蛋白水平进行了定量。该分析表明,无帽mRNA的翻译水平不到有帽HIS4 mRNA翻译水平的10%。我们的数据表明,尽管HIS4由RNA聚合酶I转录,但酵母中的mRNA仍会发生多聚腺苷酸化,并且5'帽赋予mRNA稳定性,并使其能够在体内有效翻译。

相似文献

2
The HIS4 gene from the yeast Kluyveromyces lactis.
Yeast. 1998 May;14(7):687-91. doi: 10.1002/(SICI)1097-0061(199805)14:7<687::AID-YEA261>3.0.CO;2-4.
3
The yeast exoribonuclease Xrn1 and associated factors modulate RNA polymerase II processivity in 5' and 3' gene regions.
J Biol Chem. 2020 Aug 14;295(33):11435-11454. doi: 10.1074/jbc.RA120.013426. Epub 2020 Jun 9.
6
Regulation of HIS4 expression by the Saccharomyces cerevisiae SIN4 transcriptional regulator.
Genetics. 1995 May;140(1):103-14. doi: 10.1093/genetics/140.1.103.

引用本文的文献

2
A dual interface determines the recognition of RNA polymerase II by RNA capping enzyme.
J Biol Chem. 2010 Oct 29;285(44):34027-38. doi: 10.1074/jbc.M110.145110. Epub 2010 Aug 18.
3
Transcript counting in single cells reveals dynamics of rDNA transcription.
Mol Syst Biol. 2010 Apr 13;6:358. doi: 10.1038/msb.2010.14.
4
Active VSG expression sites in Trypanosoma brucei are depleted of nucleosomes.
Eukaryot Cell. 2010 Jan;9(1):136-47. doi: 10.1128/EC.00281-09. Epub 2009 Nov 13.
8
Polyadenylation of rRNA- and tRNA-based yeast transcripts cleaved by internal ribozyme activity.
Curr Genet. 2003 Jul;43(4):255-62. doi: 10.1007/s00294-003-0401-8. Epub 2003 May 14.
9
Pushing the limits of the scanning mechanism for initiation of translation.
Gene. 2002 Oct 16;299(1-2):1-34. doi: 10.1016/s0378-1119(02)01056-9.

本文引用的文献

3
The C-terminal domain of RNA polymerase II couples mRNA processing to transcription.
Nature. 1997 Jan 23;385(6614):357-61. doi: 10.1038/385357a0.
5
The REB1 site is an essential component of a terminator for RNA polymerase I in Saccharomyces cerevisiae.
Mol Cell Biol. 1993 Jan;13(1):649-58. doi: 10.1128/mcb.13.1.649-658.1993.
6
In vivo transcriptional pausing and cap formation on three Drosophila heat shock genes.
Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):7923-7. doi: 10.1073/pnas.90.17.7923.
8
A nuclear cap binding protein complex involved in pre-mRNA splicing.
Cell. 1994 Aug 26;78(4):657-68. doi: 10.1016/0092-8674(94)90530-4.
10
Turnover mechanisms of the stable yeast PGK1 mRNA.
Mol Cell Biol. 1995 Apr;15(4):2145-56. doi: 10.1128/MCB.15.4.2145.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验