Suppr超能文献

指向空间中的动觉目标。

Pointing to kinesthetic targets in space.

作者信息

Baud-Bovy G, Viviani P

机构信息

Department of Psychobiology, Faculty of Psychology and Educational Sciences, University of Geneva, Carouge, Switzerland.

出版信息

J Neurosci. 1998 Feb 15;18(4):1528-45. doi: 10.1523/JNEUROSCI.18-04-01528.1998.

Abstract

An experiment investigated in human adults the sensorimotor transformation involved in pointing to a spatial target identified previously by kinesthetic cues. In the "locating phase," a computer-controlled mechanical arm guided the left [condition LR (left-right)] or right [condition RR (right-right)] finger of the blindfolded participant to one of 27 target positions. In the subsequent "pointing phase," the participant tried to reach the same position with the right finger. The final finger position and the posture of the arm were measured in both conditions. Constant errors were large but consistent and remarkably similar across conditions, suggesting that, whatever the locating hand, target position is coded in an extrinsic frame of reference (target position hypothesis). The main difference between the same-hand (RR) and different-hand (LR) conditions was a symmetric shift of the pattern of endpoints with respect to the midsagittal plane. This effect was modeled accurately by assuming a systematic bias in the perception of the postural angles of the locating arm. The analysis of the variable errors indicated that target position is represented internally in a spherical coordinate system centered on the shoulder of the pointing arm and that the main source of variability is within the planning stage of the pointing movement. Locating and pointing postures depended systematically on target position. We tested qualitatively the hypothesis that the selection of both postures (inverse kinematic problem) is constrained by a minimum-distance principle. In condition RR, pointing posture depended also on the locating posture, implying the presence of a memory trace of the previous movement. A scheme is suggested to accommodate the results within an extended version of the target position hypothesis.

摘要

一项实验对成年人类进行了研究,该实验涉及指向先前通过动觉线索确定的空间目标时的感觉运动转换。在“定位阶段”,一个计算机控制的机械臂将蒙眼参与者的左手手指[LR(左右)条件]或右手手指[RR(右右)条件]引导至27个目标位置之一。在随后的“指向阶段”,参与者试图用右手手指到达相同位置。在两种条件下都测量了最终手指位置和手臂姿势。恒定误差很大,但在不同条件下是一致且非常相似的,这表明无论定位手是哪只,目标位置都是在外在参考系中编码的(目标位置假设)。同手(RR)和异手(LR)条件之间的主要区别是终点模式相对于矢状面的对称偏移。通过假设在定位手臂姿势角度感知上存在系统偏差,可以准确地模拟这种效应。对可变误差的分析表明,目标位置在以指向手臂肩部为中心的球坐标系中在内部被表征,并且变异性的主要来源在指向运动的规划阶段。定位和指向姿势系统地取决于目标位置。我们定性地测试了这样一种假设,即两种姿势的选择(逆运动学问题)受最小距离原则的约束。在RR条件下,指向姿势也取决于定位姿势,这意味着存在先前运动的记忆痕迹。有人提出了一个方案,以便在目标位置假设的扩展版本中纳入这些结果。

相似文献

1
Pointing to kinesthetic targets in space.
J Neurosci. 1998 Feb 15;18(4):1528-45. doi: 10.1523/JNEUROSCI.18-04-01528.1998.
3
Viewer-centered frame of reference for pointing to memorized targets in three-dimensional space.
J Neurophysiol. 1997 Sep;78(3):1601-18. doi: 10.1152/jn.1997.78.3.1601.
6
Pointing in 3D space to remembered targets. I. Kinesthetic versus visual target presentation.
J Neurophysiol. 1998 Jun;79(6):2833-46. doi: 10.1152/jn.1998.79.6.2833.
7
Contribution of reference frames for movement planning in peripersonal space representation.
Exp Brain Res. 2006 Feb;169(1):24-36. doi: 10.1007/s00221-005-0121-z. Epub 2005 Oct 28.
8
Amplitude and direction errors in kinesthetic pointing.
Exp Brain Res. 2004 Jul;157(2):197-214. doi: 10.1007/s00221-004-1833-1. Epub 2004 Mar 26.
10
Behavioral reference frames for planning human reaching movements.
J Neurophysiol. 2006 Jul;96(1):352-62. doi: 10.1152/jn.01362.2005. Epub 2006 Mar 29.

引用本文的文献

1
Late Bayesian inference in mental transformations.
Nat Commun. 2018 Oct 24;9(1):4419. doi: 10.1038/s41467-018-06726-9.
2
Afferent motor feedback determines the perceived location of tactile stimuli in the external space presented to the moving arm.
J Neurophysiol. 2017 Jul 1;118(1):187-193. doi: 10.1152/jn.00286.2016. Epub 2017 Mar 29.
3
Sinusoidal error perturbation reveals multiple coordinate systems for sensorymotor adaptation.
Vision Res. 2016 Feb;119:82-98. doi: 10.1016/j.visres.2015.12.005. Epub 2016 Feb 5.
4
Independent sources of anisotropy in visual orientation representation: a visual and a cognitive oblique effect.
Exp Brain Res. 2015 Nov;233(11):3097-108. doi: 10.1007/s00221-015-4379-5. Epub 2015 Jul 31.
5
Proprioceptive precision is impaired in Ehlers-Danlos syndrome.
Springerplus. 2015 Jul 7;4:323. doi: 10.1186/s40064-015-1089-1. eCollection 2015.
6
Effect of teaching with or without mirror on balance in young female ballet students.
BMC Res Notes. 2014 Jul 4;7:426. doi: 10.1186/1756-0500-7-426.
7
When kinesthesia becomes visual: a theoretical justification for executing motor tasks in visual space.
PLoS One. 2013 Jul 5;8(7):e68438. doi: 10.1371/journal.pone.0068438. Print 2013.
8
Motor primitives of pointing movements in a three-dimensional workspace.
Exp Brain Res. 2013 Jun;227(3):355-65. doi: 10.1007/s00221-013-3516-2. Epub 2013 Apr 19.
9
Motor learning reveals the existence of multiple codes for movement planning.
J Neurophysiol. 2012 Nov;108(10):2708-16. doi: 10.1152/jn.00355.2012. Epub 2012 Aug 29.
10
The haptic perception of spatial orientations.
Exp Brain Res. 2008 May;187(3):331-48. doi: 10.1007/s00221-008-1382-0. Epub 2008 Apr 30.

本文引用的文献

1
The coding of location.
J Mot Behav. 1977 Jun;9(2):157-69. doi: 10.1080/00222895.1977.10735106.
3
Frames of reference and control parameters in visuomanual pointing.
J Exp Psychol Hum Percept Perform. 1998 Apr;24(2):569-91. doi: 10.1037//0096-1523.24.2.569.
4
Viewer-centered frame of reference for pointing to memorized targets in three-dimensional space.
J Neurophysiol. 1997 Sep;78(3):1601-18. doi: 10.1152/jn.1997.78.3.1601.
5
Representing spatial information for limb movement: role of area 5 in the monkey.
Cereb Cortex. 1995 Sep-Oct;5(5):391-409. doi: 10.1093/cercor/5.5.391.
7
Arm position constraints when throwing in three dimensions.
J Neurophysiol. 1994 Sep;72(3):1171-80. doi: 10.1152/jn.1994.72.3.1171.
8
Minimum-jerk, two-thirds power law, and isochrony: converging approaches to movement planning.
J Exp Psychol Hum Percept Perform. 1995 Feb;21(1):32-53. doi: 10.1037//0096-1523.21.1.32.
9
Errors in kinesthetic transformations for hand apposition.
Neuroreport. 1994 Dec 30;6(1):177-81. doi: 10.1097/00001756-199412300-00045.
10
Moving effortlessly in three dimensions: does Donders' law apply to arm movement?
J Neurosci. 1995 Sep;15(9):6271-80. doi: 10.1523/JNEUROSCI.15-09-06271.1995.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验