Suppr超能文献

使用人工神经网络进行通气模式识别。

Ventilation mode recognition using artificial neural networks.

作者信息

Leon M A, Lorini F L

机构信息

Medical Informatics Group, University of Missouri-Columbia 65211, USA.

出版信息

Comput Biomed Res. 1997 Oct;30(5):373-8. doi: 10.1006/cbmr.1997.1452.

Abstract

This study investigated the capabilities of artificial neural networks to identify spontaneous and pressure support ventilation modes from gas flow and airway pressure signals. After receiving written informed consent, flow and pressure waveforms were recorded from 13 patients undergoing general anesthesia. During analysis, the inspiratory phase of each breath was extracted and normalized in amplitude and wavelength. Neural networks were configured to input flow, pressure, or both waveforms and to output the ventilatory mode. Neural network training was accomplished with data from 500 breaths obtained from 7 patients. Neural network performance was tested with 433 breaths from the remaining 6 patients. Networks using flow, pressure, and both waveforms recognized correctly 78% (337), 97% (423), and 100% (433) of the test waveforms, respectively. Results indicate that neural networks can be used effectively for breathing pattern recognition and encourage the application of neural networks in other types of respiratory pattern recognition problems.

摘要

本研究调查了人工神经网络从气流和气道压力信号中识别自主呼吸和压力支持通气模式的能力。在获得书面知情同意后,记录了13例接受全身麻醉患者的气流和压力波形。在分析过程中,提取了每次呼吸的吸气相,并对其幅度和波长进行了归一化处理。神经网络被配置为输入气流、压力或两者波形,并输出通气模式。使用从7例患者获得的500次呼吸数据完成了神经网络训练。使用其余6例患者的433次呼吸对神经网络性能进行了测试。使用气流、压力和两者波形的网络分别正确识别了78%(337次)、97%(423次)和100%(433次)的测试波形。结果表明,神经网络可有效用于呼吸模式识别,并鼓励将神经网络应用于其他类型的呼吸模式识别问题。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验