Suppr超能文献

医学重症监护病房中人工神经网络对机械通气撤机结果预测的改善

Improvement in the Prediction of Ventilator Weaning Outcomes by an Artificial Neural Network in a Medical ICU.

作者信息

Kuo Hung-Ju, Chiu Hung-Wen, Lee Chun-Nin, Chen Tzu-Tao, Chang Chih-Cheng, Bien Mauo-Ying

机构信息

Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, New Taipei City, Taiwan. Graduate Institute of Biomedical Informatics.

Graduate Institute of Biomedical Informatics.

出版信息

Respir Care. 2015 Nov;60(11):1560-9. doi: 10.4187/respcare.03648. Epub 2015 Sep 1.

Abstract

BACKGROUND

Twenty-five to 40% of patients pass a spontaneous breathing trial (SBT) but fail to wean from mechanical ventilation. There is no single appropriate and convenient predictor or method that can help clinicians to accurately predict weaning outcomes. This study designed an artificial neural network (ANN) model for predicting successful extubation in mechanically ventilated patients.

METHODS

Ready-to-wean subjects (N = 121) hospitalized in medical ICUs were recruited and randomly divided into training (n = 76) and test (n = 45) sets. Eight variables consisting of age, reasons for intubation, duration of mechanical ventilation, Acute Physiology and Chronic Health Evaluation II score, mean inspiratory and expiratory times, mean breathing frequency, and mean expiratory tidal volume in a 30-min SBT (pressure support ventilation of 5 cm H2O and PEEP of 5 cm H2O) were selected as the ANN input variables. The prediction performance of the ANN model was compared with the rapid shallow breathing index (RSBI), maximum inspiratory pressure, RSBI at 1 min (RSBI1) and 30 min (RSBI30) in an SBT, and absolute percentage change in RSBI from 1 to 30 min in an SBT (ΔRSBI30) using a confusion matrix and receiver operating characteristic curves.

RESULTS

The area under the receiver operating characteristic curves in the test set of the ANN model was 0.83 (95% CI 0.69-0.92, P < .001), which is better than any one of the following predictors: 0.66 (95% CI 0.50-0.80, P = .04) for RSBI, 0.52 (95% CI 0.37-0.67, P = .86) for maximum inspiratory pressure, 0.53 (95% CI 0.37-0.68, P = .79) for RSBI1, 0.60 (95% CI 0.44-0.74, P = .34) for RSBI30, and 0.51 (95% CI 0.36-0.66, P = .91) for ΔRSBI30. Predicting successful extubation based on the ANN model of the test set had a sensitivity of 82%, a specificity of 73%, and an accuracy rate of 80%, with an optimal threshold of ≥ 0.5 selected from the training set.

CONCLUSIONS

The ANN model improved the accuracy of predicting successful extubation. By applying it clinically, clinicians can select the earliest appropriate weaning time.

摘要

背景

25%至40%的患者通过了自主呼吸试验(SBT),但未能成功撤机。目前尚无单一合适且便捷的预测指标或方法可帮助临床医生准确预测撤机结果。本研究设计了一种人工神经网络(ANN)模型,用于预测机械通气患者的成功拔管。

方法

招募入住内科重症监护病房(ICU)且准备撤机的患者(N = 121),并随机分为训练组(n = 76)和测试组(n = 45)。选取8个变量作为ANN输入变量,包括年龄、插管原因、机械通气时间、急性生理与慢性健康状况评估II(APACHE II)评分、30分钟SBT(压力支持通气5 cm H2O、呼气末正压5 cm H2O)中的平均吸气和呼气时间、平均呼吸频率以及平均呼气潮气量。使用混淆矩阵和受试者工作特征曲线,将ANN模型的预测性能与快速浅呼吸指数(RSBI)、最大吸气压力、SBT中1分钟(RSBI1)和30分钟(RSBI30)时的RSBI以及SBT中RSBI从1分钟到30分钟的绝对百分比变化(ΔRSBI30)进行比较。

结果

ANN模型测试组的受试者工作特征曲线下面积为0.83(95%可信区间0.69 - 0.92,P <.001),优于以下任何一个预测指标:RSBI为0.66(95%可信区间0.50 - 0.80,P =.04),最大吸气压力为0.52(95%可信区间0.37 - 0.67,P =.86),RSBI1为0.53(95%可信区间0.37 - 0.68,P =.79),RSBI30为0.60(95%可信区间0.44 - 0.74,P =.34),ΔRSBI30为0.51(95%可信区间0.36 - 0.66,P =.91)。基于测试组的ANN模型预测成功拔管的敏感性为82%,特异性为73%,准确率为80%,从训练组中选择的最佳阈值为≥0.5。

结论

ANN模型提高了预测成功拔管的准确性。临床应用该模型,临床医生可选择最早合适的撤机时间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验