Hildinger M, Fehse B, Hegewisch-Becker S, John J, Rafferty J R, Ostertag W, Baum C
Department of Cell and Virus Genetics, Heinrich-Pette-Institute for Experimental Virology and Immunology at the University of Hamburg, University Hospital Hamburg-Eppendorf, Germany.
Hum Gene Ther. 1998 Jan 1;9(1):33-42. doi: 10.1089/hum.1998.9.1-33.
When transferring the human multidrug resistance 1 (MDR1) cDNA, FMEV retroviral vectors mediate high-dose multidrug resistance and, thus, background-free selection in primary human hematopoietic progenitor cells. Here, we analyzed strategies for co-expression of a second gene from an FMEV:MDR1 vector. When linking the cDNAs with the internal ribosomal entry site (IRES) of poliovirus or retroviral splice signals, almost all multidrug-resistant hematopoietic colonies simultaneously coexpressed the 3' positioned second gene, neomycin-phosphotransferase (neoR). The IRES strategy allowed functional co-transfer of a 4.2-kb lacZ-neoR fusion gene, resulting in a total proviral genome size of 11 kb, corresponding to the packaging limit of retroviral vectors. Preselection based on multidrug resistance elevated the expression of the second gene in IRES constructs, but not in splice vectors. Moreover, three intriguing observations were made. First, up to 30% of cells preselected for functional transfer of the 3' positioned cDNA (neoR) showed infunctional MDR1; this occurred irrespective of the linking principle and was associated with instability of the MDR1 transcription unit. Second, the levels of multidrug resistance achieved with the co-expression vectors were moderately lower (15-30% reduced) than those mediated by the monocistronic counterpart. Third, transduction with FMEV:MDR1 co-expression vectors still resulted in high-dose cancer drug resistance and background-free selection of hematopoietic progenitor cells (including primary human CD34+ colony-forming units). Thus, for the first time, we describe MDR1 co-expression vectors that maintain their desired function in early and primary human hematopoietic cells. However, careful interpretation of the data reveals that further vector improvements are required to obtain clinically useful MDR1 co-expression vectors.
在转染人多药耐药1(MDR1)cDNA时,FMEV逆转录病毒载体介导高剂量多药耐药,从而在原代人造血祖细胞中实现无背景选择。在此,我们分析了从FMEV:MDR1载体共表达第二个基因的策略。当将cDNA与脊髓灰质炎病毒的内部核糖体进入位点(IRES)或逆转录病毒剪接信号连接时,几乎所有多药耐药造血集落同时共表达位于3'端的第二个基因,即新霉素磷酸转移酶(neoR)。IRES策略允许4.2 kb的lacZ-neoR融合基因进行功能性共转移,产生的前病毒基因组总大小为11 kb,与逆转录病毒载体的包装限制相对应。基于多药耐药的预选择提高了IRES构建体中第二个基因的表达,但在剪接载体中未提高。此外,还得出了三个有趣的观察结果。第一,预先选择用于3'端cDNA(neoR)功能性转移的细胞中,高达30%显示MDR1功能缺失;这与连接原理无关,且与MDR1转录单元的不稳定性有关。第二,共表达载体实现的多药耐药水平比单顺反子对应载体介导的水平适度降低(降低15 - 30%)。第三,用FMEV:MDR1共表达载体转导仍可导致高剂量抗癌药物耐药,并对造血祖细胞(包括原代人CD34 +集落形成单位)进行无背景选择。因此,我们首次描述了在早期和原代人造血细胞中保持其所需功能的MDR1共表达载体。然而,对数据的仔细解读表明,需要进一步改进载体才能获得临床上有用的MDR1共表达载体。