Suppr超能文献

Case-based reasoning in IVF: prediction and knowledge mining.

作者信息

Jurisica I, Mylopoulos J, Glasgow J, Shapiro H, Casper R F

机构信息

Department of Computer Science, University of Toronto, Ontario, Canada.

出版信息

Artif Intell Med. 1998 Jan;12(1):1-24. doi: 10.1016/s0933-3657(97)00037-7.

Abstract

In vitro fertilization (IVF) is a medically-assisted reproduction technique, enabling infertile couples to achieve successful pregnancy. Given the unpredictability of the task, we propose to use a case-based reasoning system that exploits past experiences to suggest possible modifications to an IVF treatment plan in order to improve overall success rates. Once the system's knowledge base is populated with a sufficient number of past cases, it can be used to explore and discover interesting relationships among data, thereby achieving a form of knowledge mining. The article describes the TA3IVF system--a case-based reasoning system which relies on context-based relevance assessment to assist in knowledge visualization, interactive data exploration and discovery in this domain. The system can be used as an advisor to the physician during clinical work and during research to help determine what knowledge sources are relevant for a treatment plan.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验