Varshavsky A
Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.
Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2094-9. doi: 10.1073/pnas.95.5.2094.
The insufficient selectivity of drugs is a bane of present-day therapies. This problem is significant for antibacterial drugs, difficult for antivirals, and utterly unsolved for anticancer drugs, which remain ineffective against major cancers, and in addition cause severe side effects. The problem may be solved if a therapeutic agent could have a multitarget, combinatorial selectivity, killing, or otherwise modifying, a cell if and only if it contains a predetermined set of molecular targets and lacks another predetermined set of targets. An earlier design of multitarget drugs [Varshavsky, A. (1995) Proc. Natl. Acad. Sci. USA 92, 3663-3667] was confined to macromolecular reagents such as proteins, with the attendant difficulties of intracellular delivery and immunogenicity. I now propose a solution to the problem of drug selectivity that is applicable to small (</=1 kDa) drugs. Two ideas, codominant interference and antieffectors, should allow a therapeutic regimen to possess combinatorial selectivity, in which the number of positively and negatively sensed macromolecular targets can be two, three, or more. The nature of the effector and interference moieties in a multitarget drug determines its use: selective killing of cancer cells or, for example, the inhibition of a neurotransmitter-inactivating enzyme in a specific subset of the enzyme-containing cells. The in vivo effects of such drugs would be analogous to the outcomes of the Boolean operations "and," "or," and combinations thereof. I discuss the logic and applications of the antieffector and interference/codominance concepts, and the attendant problem of pharmacokinetics.
药物选择性不足是当今治疗方法的一大弊端。这个问题对抗菌药物来说很严重,对抗病毒药物而言很棘手,而对于抗癌药物则完全没有解决办法,抗癌药物对主要癌症仍然无效,而且还会引起严重的副作用。如果一种治疗剂能够具有多靶点、组合选择性,即当且仅当细胞包含一组预定的分子靶点且缺乏另一组预定的靶点时,才对该细胞进行杀伤或进行其他修饰,那么这个问题或许可以得到解决。早期的多靶点药物设计[瓦尔沙夫斯基,A.(1995年)《美国国家科学院院刊》92卷,3663 - 3667页]局限于蛋白质等大分子试剂,随之而来的是细胞内递送和免疫原性方面的困难。我现在提出一种适用于小分子(≤1 kDa)药物的药物选择性问题的解决方案。协同干扰和抗效应器这两个概念应能使一种治疗方案具备组合选择性,其中正负感应的大分子靶点数量可以是两个、三个或更多。多靶点药物中效应器和干扰部分的性质决定了其用途:选择性杀死癌细胞,或者例如抑制特定含酶细胞亚群中的神经递质失活酶。这类药物在体内的作用将类似于布尔运算“与”“或”及其组合的结果。我将讨论抗效应器和干扰/协同优势概念的逻辑与应用,以及随之而来的药代动力学问题。