Suppr超能文献

Srb10-Srb11激酶、羧基末端结构域激酶CTDK-I与转录共抑制因子Ssn6-Tup1的功能关系。

Functional relationships of Srb10-Srb11 kinase, carboxy-terminal domain kinase CTDK-I, and transcriptional corepressor Ssn6-Tup1.

作者信息

Kuchin S, Carlson M

机构信息

Department of Genetics and Development, Columbia University, New York, New York 10032, USA.

出版信息

Mol Cell Biol. 1998 Mar;18(3):1163-71. doi: 10.1128/MCB.18.3.1163.

Abstract

The Srb10-Srb11 protein kinase of Saccharomyces cerevisiae is a cyclin-dependent kinase (cdk)-cyclin pair which has been found associated with the carboxy-terminal domain (CTD) of RNA polymerase II holoenzyme forms. Previous genetic findings implicated the Srb10-Srb11 kinase in transcriptional repression. Here we use synthetic promoters and LexA fusion proteins to test the requirement for Srb10-Srb11 in repression by Ssn6-Tup1, a global corepressor. We show that srb10delta and srb11delta mutations reduce repression by DNA-bound LexA-Ssn6 and LexA-Tup1. A point mutation in a conserved subdomain of the kinase similarly reduced repression, indicating that the catalytic activity is required. These findings establish a functional link between Ssn6-Tup1 and the Srb10-Srb11 kinase in vivo. We also explored the relationship between Srb10-Srb11 and CTD kinase I (CTDK-I), another member of the cdk-cyclin family that has been implicated in CTD phosphorylation. We show that mutation of CTK1, encoding the cdk subunit, causes defects in transcriptional repression by LexA-Tup1 and in transcriptional activation. Analysis of the mutant phenotypes and the genetic interactions of srb10delta and ctk1A suggests that the two kinases have related but distinct roles in transcriptional control. These genetic findings, together with previous biochemical evidence, suggest that one mechanism of repression by Ssn6-Tup1 involves functional interaction with RNA polymerase II holoenzyme.

摘要

酿酒酵母的Srb10-Srb11蛋白激酶是一种细胞周期蛋白依赖性激酶(cdk)-细胞周期蛋白对,已发现其与RNA聚合酶II全酶形式的羧基末端结构域(CTD)相关联。先前的遗传学研究结果表明Srb10-Srb11激酶参与转录抑制。在这里,我们使用合成启动子和LexA融合蛋白来测试Ssn6-Tup1(一种全局共抑制因子)在抑制过程中对Srb10-Srb11的需求。我们发现,srb10δ和srb11δ突变会降低DNA结合的LexA-Ssn6和LexA-Tup1的抑制作用。激酶保守亚结构域中的一个点突变同样降低了抑制作用,表明需要催化活性。这些发现建立了体内Ssn6-Tup1与Srb10-Srb11激酶之间的功能联系。我们还探讨了Srb10-Srb11与CTD激酶I(CTDK-I)之间的关系,CTDK-I是cdk-细胞周期蛋白家族的另一个成员,与CTD磷酸化有关。我们发现,编码cdk亚基的CTK1突变会导致LexA-Tup1的转录抑制和转录激活出现缺陷。对srb10δ和ctk1A突变体表型及遗传相互作用的分析表明,这两种激酶在转录控制中具有相关但不同的作用。这些遗传学发现与先前的生化证据一起表明,Ssn6-Tup1的一种抑制机制涉及与RNA聚合酶II全酶的功能相互作用。

相似文献

2
Sfl1 functions via the co-repressor Ssn6-Tup1 and the cAMP-dependent protein kinase Tpk2.
J Mol Biol. 2001 Jun 22;309(5):1007-15. doi: 10.1006/jmbi.2001.4742.
6
A kinase-cyclin pair in the RNA polymerase II holoenzyme.
Nature. 1995 Mar 9;374(6518):193-6. doi: 10.1038/374193a0.
7
Srb/mediator proteins interact functionally and physically with transcriptional repressor Sfl1.
EMBO J. 1998 Oct 1;17(19):5757-65. doi: 10.1093/emboj/17.19.5757.
9
Repression by SSN6-TUP1 is directed by MIG1, a repressor/activator protein.
Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3132-6. doi: 10.1073/pnas.92.8.3132.

引用本文的文献

1
Cyclin-dependent kinases: Masters of the eukaryotic universe.
Wiley Interdiscip Rev RNA. 2023 Sep 17;15(1):e1816. doi: 10.1002/wrna.1816.
4
TORC1 signaling modulates Cdk8-dependent GAL gene expression in Saccharomyces cerevisiae.
Genetics. 2021 Dec 10;219(4). doi: 10.1093/genetics/iyab168.
6
A meta-analysis reveals complex regulatory properties at Taf14-repressed genes.
BMC Genomics. 2017 Feb 16;18(1):175. doi: 10.1186/s12864-017-3544-6.
8
The Transcriptional Coregulator LEUNIG_HOMOLOG Inhibits Light-Dependent Seed Germination in Arabidopsis.
Plant Cell. 2015 Aug;27(8):2301-13. doi: 10.1105/tpc.15.00444. Epub 2015 Aug 14.
9
Microevolution of Candida albicans in macrophages restores filamentation in a nonfilamentous mutant.
PLoS Genet. 2014 Dec 4;10(12):e1004824. doi: 10.1371/journal.pgen.1004824. eCollection 2014 Dec.
10
Analysis of Candida albicans mutants defective in the Cdk8 module of mediator reveal links between metabolism and biofilm formation.
PLoS Genet. 2014 Oct 2;10(10):e1004567. doi: 10.1371/journal.pgen.1004567. eCollection 2014 Oct.

本文引用的文献

1
Genetics of transcriptional regulation in yeast: connections to the RNA polymerase II CTD.
Annu Rev Cell Dev Biol. 1997;13:1-23. doi: 10.1146/annurev.cellbio.13.1.1.
2
Stress and developmental regulation of the yeast C-type cyclin Ume3p (Srb11p/Ssn8p).
EMBO J. 1997 Aug 1;16(15):4665-75. doi: 10.1093/emboj/16.15.4665.
3
A complex composed of tup1 and ssn6 represses transcription in vitro.
J Biol Chem. 1997 Apr 25;272(17):11193-7. doi: 10.1074/jbc.272.17.11193.
4
Modulation of RNA polymerase II elongation efficiency by C-terminal heptapeptide repeat domain kinase I.
J Biol Chem. 1997 Apr 25;272(17):10990-3. doi: 10.1074/jbc.272.17.10990.
5
Expression of the SUC2 gene of Saccharomyces cerevisiae is induced by low levels of glucose.
Yeast. 1997 Feb;13(2):127-37. doi: 10.1002/(SICI)1097-0061(199702)13:2<127::AID-YEA68>3.0.CO;2-#.
6
Identification of Rox3 as a component of mediator and RNA polymerase II holoenzyme.
J Biol Chem. 1997 Jan 3;272(1):48-50. doi: 10.1074/jbc.272.1.48.
7
Gene activation by recruitment of the RNA polymerase II holoenzyme.
Genes Dev. 1996 Sep 15;10(18):2359-67. doi: 10.1101/gad.10.18.2359.
9
Two zinc-finger-containing repressors are responsible for glucose repression of SUC2 expression.
Mol Cell Biol. 1996 Sep;16(9):4790-7. doi: 10.1128/MCB.16.9.4790.
10
Repression domain of the yeast global repressor Tup1 interacts directly with histones H3 and H4.
Genes Dev. 1996 May 15;10(10):1247-59. doi: 10.1101/gad.10.10.1247.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验