Suppr超能文献

Organization of the medial pulvinar nucleus in the macaque.

作者信息

Ma T P, Lynch J C, Donahoe D K, Attallah H, Rafols J A

机构信息

Department of Anatomy, University of Mississippi Medical Center, Jackson 39216-4505, USA.

出版信息

Anat Rec. 1998 Feb;250(2):220-37. doi: 10.1002/(SICI)1097-0185(199802)250:2<220::AID-AR12>3.0.CO;2-Q.

Abstract

BACKGROUND

The medial pulvinar appears to subserve the integration of associative cortical information and projects to visuomotor-related cortex. In contrast to the other pulvinar subdivisions, the medial pulvinar is a polymodal structure. Therefore, we studied the structural organization of the medial pulvinar to determine how it differs from the surrounding unimodal nuclei.

METHODS

Nissl-stained sections were examined to determine the boundaries of, and the distribution of neuronal sizes within, the medial pulvinar. In addition, Golgi-impregnated neurons were examined and drawn for analysis. Only rhesus monkey specimens were used, and the material had been prepared previously for other studies.

RESULTS

Projection neurons have round to oval somata and moderate numbers of primary dendrites that extend for short distances before branching into many secondary branches. Two variations of projection neurons (P1 and P2) were distinguished on the basis of the diameters of their dendritic tree. Both varieties have short dendrites that radiate in all directions. They differ in that P2 cells have longer second tier dendrites than P1 cells. Three types of local circuit neurons, tufted, radiating and varicose, were distinguished on the basis of their dendritic morphology. Four types of afferent fibers were identified. Type 1 afferents form cone-shape terminal arbors. Type 2 afferents are similar to those reported for retinal or cortical terminals. Type 3 afferents are of medium thickness and of an unknown origin. Type 4 afferents are thin and have small varicosities consistent with previously described cortical afferents. Afferent fibers are predominantly oriented along the mediolateral axis of the nucleus. We observed putative contacts between some afferents and local circuit neurons and between local circuit neurons and projection neurons.

CONCLUSIONS

Medial pulvinar neurons are generally smaller and rounder than those found in the adjacent pulvinar nuclei. These results provide additional evidence for structural distinctions between thalamic nuclei having different functions. However, the observed differences are subtle. In addition, the data in this report provide morphological evidence that cortical signals are likely to be integrated by means of the circuitry located within the nucleus.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验