Suppr超能文献

生长激素与骨骼

Growth hormone and bone.

作者信息

Ohlsson C, Bengtsson B A, Isaksson O G, Andreassen T T, Slootweg M C

机构信息

Research Centre for Endocrinology and Metabolism, Sahlgrenska University Hospital, Göteborg, Sweden.

出版信息

Endocr Rev. 1998 Feb;19(1):55-79. doi: 10.1210/edrv.19.1.0324.

Abstract

It is well known that GH is important in the regulation of longitudinal bone growth. Its role in the regulation of bone metabolism in man has not been understood until recently. Several in vivo and in vitro studies have demonstrated that GH is important in the regulation of both bone formation and bone resorption. In Figure 9 a simplified model for the cellular effects of GH in the regulation of bone remodeling is presented (Fig. 9). GH increases bone formation in two ways: via a direct interaction with GHRs on osteoblasts and via an induction of endocrine and autocrine/paracrine IGF-I. It is difficult to say how much of the GH effect is mediated by IGFs and how much is IGF-independent. GH treatment also results in increased bone resorption. It is still unknown whether osteoclasts express functional GHRs, but recent in vitro studies indicate that GH regulates osteoclast formation in bone marrow cultures. Possible modulations of the GH/IGF axis by glucocorticoids and estrogens are also included in Fig. 9. GH deficiency results in a decreased bone mass in both man and experimental animals. Long-term treatment (> 18 months) of GHD patients with GH results in an increased bone mass. GH treatment also increases bone mass and the total mechanical strength of bones in rats with a normal GH secretion. Recent clinical studies demonstrate that GH treatment of patients with normal GH secretion increases biochemical markers for both bone formation and bone resorption. Because of the short duration of GH treatment in man with normal GH secretion, the effect on bone mass is still inconclusive. Interestingly, GH treatment to GHD adults initially results in increased bone resorption with an increased number of bone-remodeling units and more newly produced unmineralized bone, resulting in an apparent low or unchanged bone mass. However, GH treatment for more than 18 months gives increased bone formation and bone mineralization of newly produced bone and a concomitant increase in bone mass as determined with DEXA. Thus, the action of GH on bone metabolism in GHD adults is 2-fold: it stimulates both bone resorption and bone formation. We therefore propose "the biphasic model" of GH action in bone remodeling (Fig. 10). According to this model, GH initially increases bone resorption with a concomitant bone loss that is followed by a phase of increased bone formation. After the moment when bone formation is stimulated more than bone resorption (transition point), bone mass is increased. However, a net gain of bone mass caused by GH may take some time as the initial decrease in bone mass must first be replaced (Fig. 10). When all clinical studies of GH treatment of GHD adults are taken into account, it appears that the "transition point" occurs after approximately 6 months and that a net increase of bone mass will be seen after 12-18 months of GH treatment. It should be emphasized that the biphasic model of GH action in bone remodeling is based on findings in GHD adults. It remains to be clarified whether or not it is valid for subjects with normal GH secretion. A treatment intended to increase the effects of GH/IGF-I axis on bone metabolism might include: 1) GH, 2) IGF, 3) other hormones/factors increasing the local IGF-I production in bone, and 4) GH-releasing factors. Other hormones/growth factors increasing local IGF may be important but are not discussed in this article. IGF-I has been shown to increase bone mass in animal models and biochemical markers in humans. However, no effect on bone mass has yet been presented in humans. Because the financial cost for GH treatment is high it has been suggested that GH-releasing factors might be used to stimulate the GH/IGF-I axis. The advantage of GH-releasing factors over GH is that some of them can be administered orally and that they may induce a more physiological GH secretion. (ABSTRACT TRUNCATED)

摘要

众所周知,生长激素(GH)在纵向骨生长的调节中起着重要作用。直到最近,人们才了解到它在人体骨代谢调节中的作用。多项体内和体外研究表明,GH在骨形成和骨吸收的调节中都很重要。图9展示了GH在骨重塑调节中的细胞效应简化模型(图9)。GH通过两种方式增加骨形成:一是直接与成骨细胞上的生长激素受体(GHRs)相互作用,二是诱导内分泌和自分泌/旁分泌胰岛素样生长因子-I(IGF-I)。很难说GH的作用有多少是由IGFs介导的,又有多少是不依赖IGF的。GH治疗还会导致骨吸收增加。破骨细胞是否表达功能性GHRs尚不清楚,但最近的体外研究表明,GH可调节骨髓培养中的破骨细胞形成。图9还包括了糖皮质激素和雌激素对GH/IGF轴可能的调节作用。生长激素缺乏会导致人类和实验动物的骨量减少。对生长激素缺乏症(GHD)患者进行长期(>18个月)GH治疗会使骨量增加。GH治疗还能增加正常分泌GH的大鼠的骨量和骨的总机械强度。最近的临床研究表明,对正常分泌GH的患者进行GH治疗会增加骨形成和骨吸收的生化标志物。由于对正常分泌GH的人进行GH治疗的时间较短,其对骨量的影响仍无定论。有趣的是,对GHD成年人进行GH治疗最初会导致骨吸收增加,骨重塑单位数量增加,新生成的未矿化骨增多,从而导致骨量明显降低或不变。然而,超过18个月的GH治疗会使新生成骨的骨形成和骨矿化增加,同时双能X线吸收法(DEXA)测定的骨量也会增加。因此,GH对GHD成年人骨代谢的作用是双重的:它既刺激骨吸收,也刺激骨形成。我们因此提出了GH在骨重塑中的“双相模型”(图10)。根据该模型,GH最初会增加骨吸收并伴有骨量丢失,随后是骨形成增加的阶段。当骨形成受到的刺激超过骨吸收(转折点)时,骨量就会增加。然而,由于最初的骨量减少必须首先得到补充,GH导致的骨量净增加可能需要一些时间(图10)。综合考虑所有关于对GHD成年人进行GH治疗的临床研究,似乎“转折点”大约在6个月后出现,GH治疗12 - 18个月后会出现骨量的净增加。需要强调的是,GH在骨重塑中的双相模型是基于对GHD成年人的研究结果。对于正常分泌GH的个体是否有效仍有待阐明。旨在增强GH/IGF-I轴对骨代谢作用的治疗方法可能包括:1)GH,2)IGF,3)其他增加骨局部IGF-I产生的激素/因子,4)生长激素释放因子。其他增加局部IGF的激素/生长因子可能很重要,但本文未作讨论。在动物模型中,IGF-I已被证明可增加骨量,在人体中可增加生化标志物。然而,在人体中尚未发现其对骨量有影响。由于GH治疗的经济成本较高,有人建议使用生长激素释放因子来刺激GH/IGF-I轴。生长激素释放因子相对于GH的优势在于,其中一些可以口服给药,并且它们可能诱导更生理性的GH分泌。(摘要截断)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验