Suppr超能文献

从分子系统学角度看原生生物及原生生物寄生虫的进化

Evolution of the protists and protistan parasites from the perspective of molecular systematics.

作者信息

Sogin M L, Silberman J D

机构信息

Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA.

出版信息

Int J Parasitol. 1998 Jan;28(1):11-20. doi: 10.1016/s0020-7519(97)00181-1.

Abstract

Unlike prokaryotes, the Protista are rich in morphological and ultrastructure information. Their amazing phenotypic diversity permits assignment of many protists to cohesive phyletic assemblages but sometimes blurs relationships between major lineages. With the advent of molecular techniques, it became possible to test evolutionary hypotheses that were originally formulated according to shared phenotypic traits. More than any other gene family, studies of rRNAs changed our understanding of protist evolution. Stramenopiles (oomycetes, chrysophytes, phaeophytes, synurophytes, diatoms, xanthophytes, bicosoecids, slime nets) and alveolates (dinoflagellates, apicomplexans, ciliates) are two novel, complex evolutionary assemblages which diverged nearly simultaneously with animals, fungi, plants, rhodophytes, haptophytes and a myriad of independent amoeboid lineages. Their separation may have occurred one billion years ago and collectively these lineages make up the "crown" of the eukaryotic tree. Deeper branches in the eukaryotic tree show 16S-like rRNA sequence variation that is much greater than that observed within the Archaea and the Bacteria. A progression of independent protist branches, some as ancient as the divergence between the two prokaryotic domains, preceded the sudden radiation of "crown" groups. Trichomonads, diplomonads and Microsporidia are basal to all other eukaryotes included in rRNA studies. Together with pelobionts, oxymonads, retortamonads and hypermastigids, these amitochondriate taxa comprise the Archaezoa. This skeletal phylogeny suggested that early branching eukaryotes lacked mitochondria, peroxisomes and typical stacked Golgi dictyosomes. However, recent studies of heat shock proteins indicate that the first eukaryotes may have had mitochondria. When evaluated in terms of evolution of ultrastructure, lifestyles and other phenotypic traits, the rRNA phylogenies provide the most consistent of molecular trees. They permit identification of the phylogenetic affinity of many parasitic groups as well as a means to integrate molecular and cell biological information from diverse eukaryotes. We must place greater emphasis upon improved phylogenetic inference techniques and investigations of genomic diversity in protists.

摘要

与原核生物不同,原生生物富含形态学和超微结构信息。它们惊人的表型多样性使得许多原生生物能够被归入有凝聚力的系统发育类群,但有时也模糊了主要谱系之间的关系。随着分子技术的出现,检验最初根据共享表型特征提出的进化假说成为可能。与任何其他基因家族相比,对rRNA的研究改变了我们对原生生物进化的理解。不等鞭毛类(卵菌、金藻、褐藻、合尾藻、硅藻、黄藻、双环藻、黏菌网)和囊泡虫类(甲藻、顶复门原虫、纤毛虫)是两个新的、复杂的进化类群,它们与动物、真菌、植物、红藻、定鞭藻以及众多独立的变形虫谱系几乎同时分化。它们的分化可能发生在十亿年前,这些谱系共同构成了真核生物树的“树冠”。真核生物树中更深的分支显示出16S样rRNA序列变异,其变异程度远大于古细菌和细菌内部观察到的变异程度。在“树冠”类群突然辐射之前,有一系列独立的原生生物分支,其中一些与两个原核生物域之间的分化一样古老。滴虫、双滴虫和微孢子虫在rRNA研究中包含的所有其他真核生物中处于基部位置。这些无线粒体类群与栖变形虫、全鞭毛虫、曲滴虫和超鞭毛虫一起构成了古生动物界。这个框架系统发育表明,早期分支的真核生物缺乏线粒体、过氧化物酶体和典型的堆叠高尔基体。然而,最近对热休克蛋白的研究表明,最早的真核生物可能已经有线粒体。从超微结构、生活方式和其他表型特征的进化角度评估时,rRNA系统发育提供了最一致的分子树。它们允许识别许多寄生类群的系统发育亲缘关系,以及整合来自不同真核生物的分子和细胞生物学信息的方法。我们必须更加重视改进系统发育推断技术以及对原生生物基因组多样性的研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验