Suppr超能文献

Angiotensinogen gene null-mutant mice lack homeostatic regulation of glomerular filtration and tubular reabsorption.

作者信息

Okubo S, Niimura F, Matsusaka T, Fogo A, Hogan B L, Ichikawa I

机构信息

Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.

出版信息

Kidney Int. 1998 Mar;53(3):617-25. doi: 10.1046/j.1523-1755.1998.00788.x.

Abstract

Chronic volume depletion by dietary salt restriction causes marked decrease in glomerular filtration rate (GFR) with little increase in urine osmolality in angiotensinogen gene null mutant (Agt-/-) mice. Moreover, urine osmolality is insensitive to both water and vasopressin challenge. In contrast, in normal wild-type (Agt+/+) mice, GFR remains remarkably constant and urine osmolality is adjusted promptly. Changes in volume status also cause striking divergence in renal structure between Agt-/- and Agt+/+ mice. Thus, in contrast to the remarkably stable glomerular size of Agt+/+ mice, glomeruli of Agt-/- mice are atrophied during a low salt and hypertrophied during a high salt diet. Moreover, the renal papilla, a structure unique to mammals and essential for urine diluting and concentrating mechanisms, is hypoplastic in Agt-/- mice. Thus, angiotensin is essential for the two fundamental homeostatic functions of the mammalian kidney, namely stable GFR and high urine diluting and concentrating capacity during alteration in extracellular fluid (ECF) volume. This is not only accompanied by angiotensin's tonic effects on renal vasomotor tone and tubule transporters, but also accomplished through its capacity to affect the structure of both the glomerulus and the papilla directly or indirectly.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验