Suppr超能文献

利用热解质谱法和人工神经网络鉴别耐甲氧西林金黄色葡萄球菌和甲氧西林敏感金黄色葡萄球菌。

Discrimination between methicillin-resistant and methicillin-susceptible Staphylococcus aureus using pyrolysis mass spectrometry and artificial neural networks.

作者信息

Goodacre R, Rooney P J, Kell D B

机构信息

Institute of Biological Sciences, University of Wales, Aberystwyth, UK.

出版信息

J Antimicrob Chemother. 1998 Jan;41(1):27-34. doi: 10.1093/jac/41.1.27.

Abstract

Curie-point pyrolysis mass spectra were obtained from 15 methicillin-resistant and 22 methicillin-susceptible Staphylococcus aureus strains. Cluster analysis showed that the major source of variation between the pyrolysis mass spectra resulted from the phage group of the bacteria, not their resistance or susceptibility to methicillin. By contrast, artificial neural networks could be trained to recognize those aspects of the pyrolysis mass spectra that differentiated methicillin-resistant from methicillin-sensitive strains. The trained neural network could then use pyrolysis mass spectral data to assess whether an unknown strain was resistant to methicillin. These results give the first demonstration that the combination of pyrolysis mass spectrometry with neural networks can provide a very rapid and accurate antibiotic susceptibility testing technique.

摘要

从15株耐甲氧西林金黄色葡萄球菌菌株和22株甲氧西林敏感金黄色葡萄球菌菌株中获得了居里点热解质谱。聚类分析表明,热解质谱之间的主要变异来源是细菌的噬菌体组,而非它们对甲氧西林的耐药性或敏感性。相比之下,可以训练人工神经网络来识别热解质谱中区分耐甲氧西林菌株和甲氧西林敏感菌株的那些方面。经过训练的神经网络随后可以利用热解质谱数据来评估未知菌株是否对甲氧西林耐药。这些结果首次证明,热解质谱与神经网络相结合可以提供一种非常快速且准确的抗生素敏感性检测技术。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验