Suppr超能文献

利用由多序列比对得出的约束条件驱动的蒙特卡罗模拟进行小蛋白质的折叠组装。

Fold assembly of small proteins using monte carlo simulations driven by restraints derived from multiple sequence alignments.

作者信息

Ortiz A R, Kolinski A, Skolnick J

机构信息

TPC-5, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.

出版信息

J Mol Biol. 1998 Mar 27;277(2):419-48. doi: 10.1006/jmbi.1997.1595.

Abstract

The feasibility of predicting the global fold of small proteins by incorporating predicted secondary and tertiary restraints into ab initio folding simulations has been demonstrated on a test set comprised of 20 non-homologous proteins, of which one was a blind prediction of target 42 in the recent CASP2 contest. These proteins contain from 37 to 100 residues and represent all secondary structural classes and a representative variety of global topologies. Secondary structure restraints are provided by the PHD secondary structure prediction algorithm that incorporates multiple sequence information. Predicted tertiary restraints are derived from multiple sequence alignments via a two-step process. First, seed side-chain contacts are identified from correlated mutation analysis, and then a threading-based algorithm is used to expand the number of these seed contacts. A lattice-based reduced protein model and a folding algorithm designed to incorporate these predicted restraints is described. Depending upon fold complexity, it is possible to assemble native-like topologies whose coordinate root-mean-square deviation from native is between 3.0 A and 6.5 A. The requisite level of accuracy in side-chain contact map prediction can be roughly 25% on average, provided that about 60% of the contact predictions are correct within +/-1 residue and 95% of the predictions are correct within +/-4 residues. Precision in tertiary contact prediction is more critical than absolute accuracy. Furthermore, only a subset of the tertiary contacts, on the order of 25% of the total, is sufficient for successful topology assembly. Overall, this study suggests that the use of restraints derived from multiple sequence alignments combined with a fold assembly algorithm holds considerable promise for the prediction of the global topology of small proteins.

摘要

通过将预测的二级和三级限制条件纳入从头折叠模拟来预测小蛋白质的全局折叠的可行性,已在一个由20个非同源蛋白质组成的测试集上得到证明,其中一个是在最近的CASP2竞赛中对目标42的盲预测。这些蛋白质含有37至100个残基,代表了所有二级结构类别和各种具有代表性的全局拓扑结构。二级结构限制条件由结合了多序列信息的PHD二级结构预测算法提供。预测的三级限制条件通过两步过程从多序列比对中得出。首先,从相关突变分析中识别种子侧链接触,然后使用基于穿线法的算法来扩展这些种子接触的数量。描述了一种基于格点的简化蛋白质模型和一种旨在纳入这些预测限制条件的折叠算法。根据折叠复杂性,有可能组装出与天然结构相似的拓扑结构,其坐标与天然结构的均方根偏差在3.0埃至6.5埃之间。侧链接触图预测所需的精度平均大致可以为25%,前提是约60%的接触预测在±1个残基范围内正确,且95%的预测在±4个残基范围内正确。三级接触预测的精度比绝对准确性更关键。此外,仅约占总数25%的三级接触子集就足以成功进行拓扑组装。总体而言,这项研究表明,使用来自多序列比对的限制条件并结合折叠组装算法,在预测小蛋白质的全局拓扑结构方面具有很大的前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验