Hafner R, Bethel J, Power M, Landry B, Banach M, Mole L, Standiford H C, Follansbee S, Kumar P, Raasch R, Cohn D, Mushatt D, Drusano G
Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852-7620, USA.
Antimicrob Agents Chemother. 1998 Mar;42(3):631-9. doi: 10.1128/AAC.42.3.631.
This study evaluated the tolerance and potential pharmacokinetic interactions between clarithromycin (500 mg every 12 h) and rifabutin (300 mg daily) in clinically stable human immunodeficiency virus-infected volunteers with CD4 counts of <200 cells/mm3. Thirty-four subjects were randomized equally to either regimen A or regimen B. On days 1 to 14, subjects assigned to regimen A received clarithromycin and subjects assigned to regimen B received rifabutin, and then both groups received both drugs on days 15 to 42. Of the 14 regimen A and the 15 regimen B subjects who started combination therapy, 1 subject in each group prematurely discontinued therapy due to toxicity, but 19 of 29 subjects reported nausea, vomiting, and/or diarrhea. Pharmacokinetic analysis included data for 11 regimen A and 14 regimen B subjects. Steady-state pharmacokinetic parameters for single-agent therapy (day 14) and combination therapy (day 42) were compared. Regimen A resulted in a mean decrease of 44% (P = 0.003) in the clarithromycin area under the plasma concentration-time curve (AUC), while there was a mean increase of 57% (P = 0.004) in the AUC of the clarithromycin metabolite 14-OH-clarithromycin. Regimen B resulted in a mean increase of 99% (P = 0.001) in the rifabutin AUC and a mean increase of 375% (P < 0.001) in the AUC of the rifabutin metabolite 25-O-desacetyl-rifabutin. The usefulness of this combination for prophylaxis of Mycobacterium avium infections is limited by frequent gastrointestinal adverse events. Coadministration of clarithromycin and rifabutin results in significant bidirectional pharmacokinetic interactions. The resulting increase in rifabutin levels may explain the increased frequency of uveitis observed with concomitant use of these drugs.
本研究评估了在临床病情稳定、CD4 细胞计数<200 个/mm³的人类免疫缺陷病毒感染志愿者中,克拉霉素(每 12 小时 500 毫克)与利福布汀(每日 300 毫克)之间的耐受性及潜在药代动力学相互作用。34 名受试者被等分为 A 方案组或 B 方案组。在第 1 至 14 天,分配至 A 方案组的受试者接受克拉霉素,分配至 B 方案组的受试者接受利福布汀,然后两组在第 15 至 42 天均接受两种药物。在开始联合治疗的 14 名 A 方案组受试者和 15 名 B 方案组受试者中,每组各有 1 名受试者因毒性反应提前终止治疗,但 29 名受试者中有 19 名报告出现恶心、呕吐和/或腹泻。药代动力学分析纳入了 11 名 A 方案组受试者和 14 名 B 方案组受试者的数据。比较了单药治疗(第 14 天)和联合治疗(第 42 天)的稳态药代动力学参数。A 方案导致克拉霉素血浆浓度-时间曲线下面积(AUC)平均降低 44%(P = 0.003),而克拉霉素代谢产物 14-OH-克拉霉素的 AUC 平均增加 57%(P = 0.004)。B 方案导致利福布汀 AUC 平均增加 99%(P = 0.001),利福布汀代谢产物 25-O-去乙酰利福布汀的 AUC 平均增加 375%(P < 0.001)。这种联合用药对预防鸟分枝杆菌感染效果有限,原因是频繁出现胃肠道不良事件。克拉霉素与利福布汀合用时会产生显著的双向药代动力学相互作用。利福布汀水平的升高可能解释了同时使用这些药物时葡萄膜炎发生率增加的原因。