Suppr超能文献

方向调谐曲线:参数的经验描述与估计

Orientation tuning curves: empirical description and estimation of parameters.

作者信息

Swindale N V

机构信息

Department of Ophthalmology, University of British Columbia, Vancouver, Canada.

出版信息

Biol Cybern. 1998 Jan;78(1):45-56. doi: 10.1007/s004220050411.

Abstract

This paper compares the ability of some simple model functions to describe orientation tuning curves obtained in extracellular single-unit recordings from area 17 of the cat visual cortex. It also investigates the relationships between three methods currently used to estimate preferred orientation from tuning curve data: (a) least-squares curve fitting, (b) the vector sum method and (c) the Fourier transform method (Wörgötter and Eysel 1987). The results show that the best fitting model function for single-unit orientation tuning curves is a von Mises circular function with a variable degree of skewness. However, other functions, such as a wrapped Gaussian, fit the data nearly as well. A cosine function provides a poor description of tuning curves in almost all instances. It is demonstrated that the vector sum and Fourier methods of determining preferred orientation are equivalent, and identical to calculating a least-square fit of a cosine function to the data. Least-squares fitting of a better model function, such as a von Mises function or a wrapped Gaussian, is therefore likely to be a better method for estimating preferred orientation. Monte-Carlo simulations confirmed this, although for broad orientation tuning curves sampled at 45 degree intervals, as is typical in optical recording experiments, all the methods gave similarly accurate estimates of preferred orientation. The sampling interval, the estimated error in the response measurements and the probable shape of the underlying response function all need to be taken into account in deciding on the best method of estimating referred orientation from physiological measurements of orientation tuning data.

摘要

本文比较了一些简单模型函数描述从猫视觉皮层17区细胞外单单元记录中获得的方向调谐曲线的能力。它还研究了目前用于从调谐曲线数据估计偏好方向的三种方法之间的关系:(a) 最小二乘曲线拟合,(b) 矢量和法,以及 (c) 傅里叶变换法(Wörgötter和Eysel,1987)。结果表明,单单元方向调谐曲线的最佳拟合模型函数是具有可变偏斜度的冯·米塞斯圆形函数。然而,其他函数,如包裹高斯函数,对数据的拟合效果几乎一样好。余弦函数在几乎所有情况下对调谐曲线的描述都很差。结果表明,确定偏好方向的矢量和法与傅里叶法是等效的,并且与计算余弦函数对数据的最小二乘拟合相同。因此,用更好的模型函数(如冯·米塞斯函数或包裹高斯函数)进行最小二乘拟合可能是估计偏好方向的更好方法。蒙特卡洛模拟证实了这一点,尽管对于光学记录实验中典型的以45度间隔采样的宽方向调谐曲线,所有方法对偏好方向的估计都同样准确。在从方向调谐数据的生理测量中确定估计偏好方向的最佳方法时,需要考虑采样间隔、响应测量中的估计误差以及潜在响应函数可能的形状。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验