Suppr超能文献

Structure-activity relationships of volatile organic chemicals as sensory irritants.

作者信息

Alarie Y, Schaper M, Nielsen G D, Abraham M H

机构信息

University of Pittsburgh, PA 15238, USA.

出版信息

Arch Toxicol. 1998 Feb;72(3):125-40. doi: 10.1007/s002040050479.

Abstract

We used a database of 145 volatile organic chemicals for which the sensory irritation potency (RD50) has been reported in mice. Chemicals were first separated into two groups: nonreactive and reactive, using Ferguson's rule. This rule suggests that nonreactive chemicals induce their effect via a physical (p) mechanism (i.e., weak forces or interactions between a chemical and a biological receptor). Therefore, appropriate physicochemical descriptors can be used to estimate their potency. For reactives, a chemical (c) mechanism (i.e., covalent bonding with the receptor) would explain their potency. All chemicals were also separated on the basis of functional groups and subgroups into 24 classifications. Our results indicated that the potency of nonreactive chemicals, regardless of their chemical structure, can be estimated using a variety of physicochemical descriptors. For reactive chemicals, we identified five basic reactivity mechanisms which explained why their potency was higher than that estimated from physicochemical descriptors. We concluded that Ferguson's proposed rule is adequate initially to classify two separate mechanisms of receptor interactions, p vs c. Several physicochemical descriptors can be used to estimate the potency of p chemicals, but chemical reactivity descriptors are needed to estimate the potency for c chemicals. At present, this is the largest database for nonreactive-reactive chemicals in toxicology. Because of the wide variety of c chemicals presented, a semi-quantitative estimate of the potency of new, or not previously evaluated, c chemicals can be arrived at via comparison with those presented and the basic chemical reactivity mechanisms presented.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验