Haaheim H, Dahl K H, Simonsen G S, Olsvik O, Sundsfjord A
University of Tromsø, Norway.
Biotechniques. 1998 Mar;24(3):432-7. doi: 10.2144/98243st02.
Glycopeptide-resistant enterococci (GRE) associated with multiple antibiotic resistance present a major challenge to clinical practice and infection control due to limited or nonexistent antimicrobial treatment options. The genes encoding VanA- and VanB-type glycopeptide resistance have been shown to reside on transposons Tn1546 and Tn1547, respectively. These transferable genetic elements may carry the resistance determinants between and within different ecological niches. Molecular epidemiological studies of nosocomial outbreaks of VanA- and VanB-type GRE indicate horizontal transfer of glycopeptide resistance genes as an important mechanism for the spread of GRE. To target infection control and better understand the epidemiology of GRE, outbreak investigations and molecular epidemiological studies should therefore apply at least two different approaches, i.e., molecular-typing methods to analyze bacterial genomic heterogeneity and structural analysis of mobile resistance determinants. Here we describe the development and use of long PCRs in the structural analysis of vanA and vanB gene clusters in GRE.
耐糖肽肠球菌(GRE)与多重耐药相关,由于抗菌治疗选择有限或不存在,给临床实践和感染控制带来了重大挑战。编码VanA和VanB型糖肽耐药性的基因已分别显示位于转座子Tn1546和Tn1547上。这些可转移的遗传元件可能在不同生态位之间和之内携带耐药决定因素。对VanA和VanB型GRE医院内暴发的分子流行病学研究表明,糖肽耐药基因的水平转移是GRE传播的重要机制。因此,为了针对感染控制并更好地了解GRE的流行病学,暴发调查和分子流行病学研究应至少应用两种不同方法,即分子分型方法来分析细菌基因组异质性以及对移动耐药决定因素进行结构分析。在此,我们描述了长PCR在GRE中vanA和vanB基因簇结构分析中的开发和应用。