Green-Willms N S, Fox T D, Costanzo M C
Section of Genetics and Development, Cornell University, Ithaca, New York 14853-2703, USA.
Mol Cell Biol. 1998 Apr;18(4):1826-34. doi: 10.1128/MCB.18.4.1826.
Translation of mitochondrial mRNAs in Saccharomyces cerevisiae depends on mRNA-specific translational activators that recognize the 5' untranslated leaders (5'-UTLs) of their target mRNAs. We have identified mutations in two new nuclear genes that suppress translation defects due to certain alterations in the 5'-UTLs of both the COX2 and COX3 mRNAs, indicating a general function in translational activation. One gene, MRP21, encodes a protein with a domain related to the bacterial ribosomal protein S21 and to unidentified proteins of several animals. The other gene, MRP51, encodes a novel protein whose only known homolog is encoded by an unidentified gene in S. kluyveri. Deletion of either MRP21 or MRP51 completely blocked mitochondrial gene expression. Submitochondrial fractionation showed that both Mrp21p and Mrp51p cosediment with the mitochondrial ribosomal small subunit. The suppressor mutations are missense substitutions, and those affecting Mrp21p alter the region homologous to E. coli S21, which is known to interact with mRNAs. Interactions of the suppressor mutations with leaky mitochondrial initiation codon mutations strongly suggest that the suppressors do not generally increase translational efficiency, since some alleles that strongly suppress 5'-UTL mutations fail to suppress initiation codon mutations. We propose that mitochondrial ribosomes themselves recognize a common feature of mRNA 5'-UTLs which, in conjunction with mRNA-specific translational activation, is required for organellar translation initiation.
酿酒酵母中线粒体mRNA的翻译依赖于mRNA特异性翻译激活因子,这些激活因子可识别其靶mRNA的5'非翻译前导序列(5'-UTL)。我们在两个新的核基因中鉴定到了突变,这些突变可抑制由于COX2和COX3 mRNA的5'-UTL发生某些改变而导致的翻译缺陷,这表明它们在翻译激活中具有普遍功能。一个基因MRP21编码一种蛋白质,该蛋白质具有一个与细菌核糖体蛋白S21以及几种动物中未鉴定的蛋白质相关的结构域。另一个基因MRP51编码一种新型蛋白质,其唯一已知的同源物由克鲁维酵母中一个未鉴定的基因编码。缺失MRP21或MRP51都会完全阻断线粒体基因表达。线粒体分级分离显示,Mrp21p和Mrp51p都与线粒体核糖体小亚基共沉降。抑制突变是错义替换,那些影响Mrp21p的突变改变了与大肠杆菌S21同源的区域,已知该区域与mRNA相互作用。抑制突变与线粒体起始密码子渗漏突变的相互作用强烈表明,这些抑制因子通常不会提高翻译效率,因为一些强烈抑制5'-UTL突变的等位基因无法抑制起始密码子突变。我们提出,线粒体核糖体本身识别mRNA 5'-UTL的一个共同特征,该特征与mRNA特异性翻译激活一起,是细胞器翻译起始所必需的。