Suppr超能文献

The deconvolution of pyrolysis mass spectra using genetic programming: application to the identification of some Eubacterium species.

作者信息

Taylor J, Goodacre R, Wade W G, Rowland J J, Kell D B

机构信息

Institute of Biological Sciences, University of Wales, Aberystwyth, UK.

出版信息

FEMS Microbiol Lett. 1998 Mar 15;160(2):237-46. doi: 10.1111/j.1574-6968.1998.tb12917.x.

Abstract

Pyrolysis mass spectrometry was used to produce complex biochemical fingerprints of Eubacterium exiguum, E. infirmum, E. tardum and E. timidum. To examine the relationship between these organisms the spectra were clustered by canonical variates analysis, and four clusters, one for each species, were observed. In an earlier study we trained artificial neural networks to identify these clinical isolates successfully; however, the information used by the neural network was not accessible from this so-called 'black box' technique. To allow the deconvolution of such complex spectra (in terms of which masses were important for discrimination) it was necessary to develop a system that itself produces 'rules' that are readily comprehensible. We here exploit the evolutionary computational technique of genetic programming; this rapidly and automatically produced simple mathematical functions that were also able to classify organisms to each of the four bacterial groups correctly and unambiguously. Since the rules used only a very limited set of masses, from a search space some 50 orders of magnitude greater than the dimensionality actually necessary, visual discrimination of the organisms on the basis of these spectral masses alone was also then possible.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验