Suppr超能文献

流行病学中离散数据的近似层次建模

Approximate hierarchical modelling of discrete data in epidemiology.

作者信息

Breslow N, Leroux B, Platt R

机构信息

Department of Biostatistics, University of Washington, Seattle 98195-7232, USA.

出版信息

Stat Methods Med Res. 1998 Mar;7(1):49-62. doi: 10.1177/096228029800700105.

Abstract

Hierarchical models are used in epidemiology to estimate and analyse multiple, related relative risks. Examples include meta-analyses of series of 2 x 2 tables and mapping of spatially correlated disease rates. Empirical transform and penalized quasilikelihood procedures, both of which may be implemented using standard programs for mixed model analysis, provide satisfactory approximate inferences for these problems when cell frequencies are large. Simulation studies show that, in certain situations involving small cell frequencies, penalized quasilikelihood provides satisfactory estimates of variance components and regression coefficients whereas the empirical transform approach does not.

摘要

分层模型在流行病学中用于估计和分析多个相关的相对风险。示例包括对一系列2×2表格的荟萃分析以及空间相关疾病发生率的映射。经验变换和惩罚拟似然程序都可以使用混合模型分析的标准程序来实现,当单元格频率较大时,它们为这些问题提供了令人满意的近似推断。模拟研究表明,在某些涉及小单元格频率的情况下,惩罚拟似然提供了令人满意的方差分量和回归系数估计,而经验变换方法则不然。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验