Suppr超能文献

使用高斯差分和基于导数的特征显著性进行计算机辅助乳腺癌肿块检测与诊断。

Computer-aided breast cancer detection and diagnosis of masses using difference of Gaussians and derivative-based feature saliency.

作者信息

Polakowski W E, Cournoyer D A, Rogers S K, DeSimio M P, Ruck D W, Hoffmeister J W, Raines R A

机构信息

Air Force Information Warfare Center, San Antonio, TX 78243, USA.

出版信息

IEEE Trans Med Imaging. 1997 Dec;16(6):811-9. doi: 10.1109/42.650877.

Abstract

A new model-based vision (MBV) algorithm is developed to find regions of interest (ROI's) corresponding to masses in digitized mammograms and to classify the masses as malignant/benign. The MBV algorithm is comprised of five modules to structurally identify suspicious ROI's, eliminate false positives, and classify the remaining as malignant or benign. The focus of attention module uses a difference of Gaussians (DoG) filter to highlight suspicious regions in the mammogram. The index module uses tests to reduce the number of nonmalignant regions from 8.39 to 2.36 per full breast image. Size, shape, contrast, and Laws texture features are used to develop the prediction module's mass models. Derivative-based feature saliency techniques are used to determine the best features for classification. Nine features are chosen to define the malignant/benign models. The feature extraction module obtains these features from all suspicious ROI's. The matching module classifies the regions using a multilayer perceptron neural network architecture to obtain an overall classification accuracy of 100% for the segmented malignant masses with a false-positive rate of 1.8 per full breast image. This system has a sensitivity of 92% for locating malignant ROI's. The database contains 272 images (12 b, 100 microm) with 36 malignant and 53 benign mass images. The results demonstrate that the MBV approach provides a structured order of integrating complex stages into a system for radiologists.

摘要

开发了一种基于模型的新视觉(MBV)算法,以在数字化乳腺X线照片中找到与肿块相对应的感兴趣区域(ROI),并将这些肿块分类为恶性/良性。MBV算法由五个模块组成,用于从结构上识别可疑ROI,消除误报,并将其余的分类为恶性或良性。注意力聚焦模块使用高斯差分(DoG)滤波器突出显示乳腺X线照片中的可疑区域。索引模块使用测试将每个全乳腺图像中非恶性区域的数量从8.39减少到2.36。大小、形状、对比度和劳斯纹理特征用于开发预测模块的肿块模型。基于导数的特征显著性技术用于确定分类的最佳特征。选择九个特征来定义恶性/良性模型。特征提取模块从所有可疑ROI中获取这些特征。匹配模块使用多层感知器神经网络架构对区域进行分类,对于分割出的恶性肿块,整体分类准确率为100%,每个全乳腺图像的误报率为1.8。该系统定位恶性ROI的灵敏度为92%。数据库包含272张图像(12 b,100微米),其中有36张恶性肿块图像和53张良性肿块图像。结果表明,MBV方法为放射科医生提供了一种将复杂阶段整合到系统中的结构化顺序。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验