Suppr超能文献

针对具有稀疏相关数据的比值比回归模型的推断。

Inference for odds ratio regression models with sparse dependent data.

作者信息

Hanfelt J J, Liang K Y

机构信息

Department of Biomathematics and Biostatistics, Georgetown University, Washington, D.C. 20007, USA.

出版信息

Biometrics. 1998 Mar;54(1):136-47.

PMID:9544512
Abstract

Suppose the number of 2 x 2 tables is large relative to the average table size, and the observations within a given table are dependent, as occurs in longitudinal or family-based case-control studies. We consider fitting regression models to the odds ratios using table-level covariates. The focus is on methods to obtain valid inferences for the regression parameters beta when the dependence structure is unknown. In this setting, Liang (1985, Biometrika 72, 678-682) has shown that inference based on the noncentral hypergeometric likelihood is sensitive to misspecification of the dependence structure. In contrast, estimating functions based on the Mantel-Haenszel method yield consistent estimators of beta. We show here that, under the estimating function approach, Wald's confidence interval for beta performs well in multiplicative regression models but unfortunately has poor coverage probabilities when an additive regression model is adopted. As an alternative to Wald inference, we present a Mantel-Haenszel quasi-likelihood function based on integrating the Mantel-Haenszel estimating function. A simulation study demonstrates that, in medium-sized samples, the Mantel-Haenszel quasi-likelihood approach yields better inferences than other methods under an additive regression model and inferences comparable to Wald's method under a multiplicative model. We illustrate the use of this quasi-likelihood method in a study of the familial risk of schizophrenia.

摘要

假设2×2表格的数量相对于平均表格大小而言很大,并且给定表格中的观测值是相关的,这在纵向或基于家庭的病例对照研究中会出现。我们考虑使用表格层面的协变量对优势比拟合回归模型。重点在于当依赖结构未知时,获得回归参数β有效推断的方法。在这种情况下,梁(1985年,《生物统计学》72卷,678 - 682页)表明基于非中心超几何似然的推断对依赖结构的错误设定很敏感。相比之下,基于曼特尔 - 亨泽尔方法的估计函数能产生β的一致估计量。我们在此表明,在估计函数方法下,β的 Wald 置信区间在乘法回归模型中表现良好,但不幸的是,当采用加法回归模型时,其覆盖概率较差。作为 Wald 推断的替代方法,我们提出一种基于对曼特尔 - 亨泽尔估计函数进行积分的曼特尔 - 亨泽尔拟似然函数。一项模拟研究表明,在中等规模样本中,在加法回归模型下,曼特尔 - 亨泽尔拟似然方法比其他方法能产生更好的推断,在乘法模型下,其推断与 Wald 方法相当。我们在一项精神分裂症家族风险研究中说明了这种拟似然方法的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验