Suppr超能文献

多元离散失效时间数据建模。

Modeling multivariate discrete failure time data.

作者信息

Shih J H

机构信息

Office of Biostatistics Research, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20892-7938, USA.

出版信息

Biometrics. 1998 Sep;54(3):1115-28.

PMID:9750256
Abstract

A bivariate discrete survival distribution that allows flexible modeling of the marginal distributions and yields a constant odds ratio at any grid point is proposed. The distribution can be extended to a multivariate distribution and is readily generalized to accommodate covariates in the marginal distributions and pairwise odds ratios. In addition, a pseudo-likelihood estimation procedure for estimating the regression coefficients in the marginal models and the association parameters in the pairwise odds ratios is presented. We evaluate the performance of the proposed estimation procedure through simulations. For bivariate data, pseudo-likelihood estimation of the association parameter has high efficiency. Loss of efficiency in the marginal regression coefficient estimates is small when the association is not strong. For both the marginal regression coefficients and the association parameter, coverage probabilities are close to the 95% nominal level. For multivariate data, the simulation results show that the parameter estimates are consistent. Coverage probability for the regression coefficient in the marginal model is close to the 95% nominal level but is slightly less than the nominal level for the association parameter. We illustrate the proposed methods using a subset of the Framingham Heart Study data where a significant positive association was found between the failure times of siblings.

摘要

提出了一种双变量离散生存分布,它允许对边际分布进行灵活建模,并在任何网格点产生恒定的优势比。该分布可以扩展为多变量分布,并且很容易推广以适应边际分布中的协变量和成对优势比。此外,还提出了一种伪似然估计程序,用于估计边际模型中的回归系数和成对优势比中的关联参数。我们通过模拟评估了所提出估计程序的性能。对于双变量数据,关联参数的伪似然估计具有很高的效率。当关联不强时,边际回归系数估计中的效率损失很小。对于边际回归系数和关联参数,覆盖概率都接近95%的名义水平。对于多变量数据,模拟结果表明参数估计是一致的。边际模型中回归系数的覆盖概率接近95%的名义水平,但关联参数的覆盖概率略低于名义水平。我们使用弗雷明汉心脏研究数据的一个子集来说明所提出的方法,在该子集中发现兄弟姐妹的发病时间之间存在显著的正相关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验