Nishimura M, Yan W, Mukudai Y, Nakamura S, Nakamasu K, Kawata M, Kawamoto T, Noshiro M, Hamada T, Kato Y
Department of Prosthetic Dentistry, Hiroshima University, School of Dentistry, Japan.
Biochim Biophys Acta. 1998 Mar 12;1380(1):1-9. doi: 10.1016/s0304-4165(97)00119-0.
The purpose of this study was to investigate the role of chondroitin sulfate-hyaluronan interactions in the viscoelastic properties of tissues and fluids, using capillary and cone-on-plate viscometers. Chondroitin sulfate markedly increased the viscosity of hyaluronan solutions at a wide range of hyaluronan mass (50-1900 kDa) under physiological conditions of pH, temperature, ionic strength and glycosaminoglycan concentration (0.5-40 mg/ml), although the viscosity of the chondroitin sulfate solutions themselves was very low. In the assay using a cone-on-plate viscometer, chondroitin sulfate increased the viscosity of hyaluronan solutions at various shear rates. At low shear rates, the viscosity of a chondroitin sulfate (5 mg/ml)-hyaluronan (0.5 mg/ml) mixture was about 40% of that of an aggrecan (5 mg/ml)-hyaluronan (0.5 mg/ml) mixture, and at 2.8-fold higher concentrations, chondroitin sulfate elicited the same effect on the viscosity of hyaluronan solutions (5 mg/ml) as an aggrecan monomer. In the presence of oscillatory motion, the addition of aggrecan increased the elasticity (storage) modulus G' and the viscosity (loss) modulus G" of hyaluronan solutions and markedly decreased the loss tangent G"/G' at frequencies corresponding to normal joint movements. In contrast, chondroitin sulfate had only a marginal effect on the loss tangent G"/G', although it increased G' and G". These findings demonstrated that chondroitin sulfate, as well as aggrecan, increases the viscosity of hyaluronan solutions, although chondroitin sulfate has less effect on the elasticity of hyaluronan solutions than that of aggrecan, and suggest that chondroitin sulfate may play an important physiological role in determining the viscoelastic properties of extracellular matrices and fluids.
本研究的目的是使用毛细管粘度计和锥板粘度计,研究硫酸软骨素-透明质酸相互作用在组织和流体粘弹性特性中的作用。在生理条件下的pH值、温度、离子强度和糖胺聚糖浓度(0.5-40mg/ml)范围内,硫酸软骨素显著增加了多种分子量(50-1900kDa)透明质酸溶液的粘度,尽管硫酸软骨素溶液本身的粘度非常低。在使用锥板粘度计的测定中,硫酸软骨素在不同剪切速率下均增加了透明质酸溶液的粘度。在低剪切速率下,硫酸软骨素(5mg/ml)-透明质酸(0.5mg/ml)混合物的粘度约为聚集蛋白聚糖(5mg/ml)-透明质酸(0.5mg/ml)混合物粘度的40%,且在浓度高出2.8倍时,硫酸软骨素对透明质酸溶液(5mg/ml)粘度的影响与聚集蛋白聚糖单体相同。在存在振荡运动的情况下,添加聚集蛋白聚糖会增加透明质酸溶液的弹性(储能)模量G'和粘度(耗能)模量G'',并在对应于正常关节运动的频率下显著降低损耗角正切G''/G'。相比之下,硫酸软骨素对损耗角正切G''/G'仅有轻微影响,尽管它增加了G'和G''。这些发现表明,硫酸软骨素以及聚集蛋白聚糖均可增加透明质酸溶液的粘度,尽管硫酸软骨素对透明质酸溶液弹性的影响小于聚集蛋白聚糖,并提示硫酸软骨素可能在决定细胞外基质和流体的粘弹性特性方面发挥重要的生理作用。