Suppr超能文献

使用有限元方法预测C5-C6运动节段脊柱组件之间的负荷分担

Prediction of load sharing among spinal components of a C5-C6 motion segment using the finite element approach.

作者信息

Goel V K, Clausen J D

机构信息

Department of Biomedical Engineering, Iowa Spine Research Center, University of Iowa, Iowa City, USA.

出版信息

Spine (Phila Pa 1976). 1998 Mar 15;23(6):684-91. doi: 10.1097/00007632-199803150-00008.

Abstract

STUDY DESIGN

A finite element model of the ligamentous cervical spinal segment was used to compute loads in various structures in response to clinically relevant loading modes.

OBJECTIVE

To predict biomechanical parameters, including intradisc pressure, tension in ligaments, and forces across facets that are not practical to quantify with an experimental approach.

SUMMARY OF BACKGROUND DATA

Finite element models of the cervical spine in their present form, because of inherent assumptions and simplifications, are not entirely satisfactory for studying the biomechanics of the intact, injured, and stabilized cervical spinal segment.

METHODS

A three-dimensional finite element model of a C5-C6 motion segment was developed from serial computed tomographic scans of a ligamentous cervical spinal segment. This model included nonlinear ligament definition, fully composite intervertebral disc, fluid nucleus, and Luschka's joints. The model-based displacement predictions were in agreement with the experimental data. This model was used to predict load sharing and other related parameters in spinal elements in response to various loading modalities.

RESULTS

In axial compression, 88% of the applied load passed through the disc. The interspinal ligament experienced the most strain (29.5%) in flexion, and the capsular ligaments were strained the most (15.5%) in axial rotation. The maximum intradisc pressure was 0.24 MPa in the flexion with axial compression mode (1.8 Nm + 73.6 N). The anterior and posterior disc bulges increased with the increase in axial compression (up to 800 N).

CONCLUSIONS

The results provide new insight into the role of various elements in transmitting loads. The model represents significant and essential advancement in comparison with previous finite element models, making it possible for such models to be used in investigating a broad spectrum of clinically relevant issues.

摘要

研究设计

采用颈椎节段韧带的有限元模型来计算在临床相关加载模式下各种结构中的负荷。

目的

预测生物力学参数,包括椎间盘内压力、韧带张力以及小关节间的力,这些参数用实验方法难以量化。

背景资料总结

目前形式的颈椎有限元模型,由于其固有的假设和简化,对于研究完整、损伤和稳定的颈椎节段的生物力学并不完全令人满意。

方法

从颈椎节段韧带的系列计算机断层扫描图像建立了C5 - C6运动节段的三维有限元模型。该模型包括非线性韧带定义、完全复合椎间盘、流体髓核和钩椎关节。基于模型的位移预测与实验数据一致。该模型用于预测脊柱元件在各种加载方式下的负荷分担及其他相关参数。

结果

在轴向压缩时,88%的外加负荷通过椎间盘。棘间韧带在屈曲时应变最大(29.5%),关节囊韧带在轴向旋转时应变最大(15.5%)。在屈曲伴轴向压缩模式(1.8 Nm + 73.6 N)下,椎间盘内最大压力为0.24 MPa。随着轴向压缩增加(高达800 N),椎间盘前后膨出增加。

结论

这些结果为各种元件在传递负荷中的作用提供了新的见解。与先前的有限元模型相比,该模型有显著且重要的进步,使得此类模型可用于研究广泛的临床相关问题。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验