Yan Z H, Karam W G, Staudinger J L, Medvedev A, Ghanayem B I, Jetten A M
Cell Biology Section, Laboratory of Pulmonary Pathobiology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA.
J Biol Chem. 1998 May 1;273(18):10948-57. doi: 10.1074/jbc.273.18.10948.
Recently, we reported the cloning of the nuclear orphan receptor TAK1. In this study, we characterized the sequence requirements for optimal TAK1 binding and analyzed the repression of the peroxisome proliferator-activated receptor alpha (PPARalpha) signaling pathway by TAK1. Site selection analysis showed that TAK1 has the greatest affinity for direct repeat-1 response elements (RE) containing AGGTCAAAGGTCA (TAK1-RE) to which it binds as a homodimer. TAK1 is a very weak inducer of TAK1-RE-dependent transcriptional activation. We observed that TAK1, as PPARalpha, is expressed within rat hepatocytes and is able to bind the peroxisome proliferator response elements (PPREs) present in the promoter of the PPARalpha target genes rat enoyl-CoA hydratase (HD) and peroxisomal fatty acyl-CoA oxidase (ACOX). TAK1 is unable to induce PPRE-dependent transcriptional activation and represses PPARalpha-mediated transactivation through these elements in a dose-dependent manner. Two-hybrid analysis showed that TAK1 does not form heterodimers with either PPARalpha or retinoid X receptor (RXRalpha), indicating that this repression does not involve a mechanism by which TAK1 titrates out PPARalpha or RXRalpha from PPAR.RXR complexes. Further studies demonstrated that the PPARalpha ligand 8(S)-hydroxyeicosatetraenoic acid strongly promotes the interaction of PPARalpha with the co-activator RIP-140 but decreases the interaction of PPARalpha with the co-repressor SMRT. In contrast, TAK1 interacts with RIP-140 but not with SMRT and competes with PPARalpha for RIP-140 binding. These observations indicated that the antagonistic effects of TAK1 on PPARalpha.RXRalpha transactivation act at least at two levels in the PPARalpha signaling pathway: competition of TAK1 with PPARalpha.RXR for binding to PPREs as well as to common co-activators, such as RIP-140. Our results suggest an important role for TAK1 in modulating PPARalpha-controlled gene expression in hepatocytes.
最近,我们报道了核孤儿受体TAK1的克隆。在本研究中,我们确定了TAK1最佳结合的序列要求,并分析了TAK1对过氧化物酶体增殖物激活受体α(PPARα)信号通路的抑制作用。位点选择分析表明,TAK1对含有AGGTCAAAGGTCA的直接重复-1反应元件(RE)(TAK1-RE)具有最高亲和力,它以同二聚体形式与之结合。TAK1是TAK1-RE依赖性转录激活的非常弱的诱导剂。我们观察到,与PPARα一样,TAK1在大鼠肝细胞中表达,并且能够结合PPARα靶基因大鼠烯酰辅酶A水合酶(HD)和过氧化物酶体脂肪酰辅酶A氧化酶(ACOX)启动子中存在的过氧化物酶体增殖物反应元件(PPRE)。TAK1不能诱导PPRE依赖性转录激活,而是以剂量依赖性方式通过这些元件抑制PPARα介导的反式激活。双杂交分析表明,TAK1不与PPARα或视黄酸X受体(RXRα)形成异二聚体,这表明这种抑制不涉及TAK1从PPAR.RXR复合物中滴定出PPARα或RXRα的机制。进一步研究表明,PPARα配体8(S)-羟基二十碳四烯酸强烈促进PPARα与共激活因子RIP-140的相互作用,但降低PPARα与共抑制因子SMRT的相互作用。相反,TAK1与RIP-140相互作用,但不与SMRT相互作用,并与PPARα竞争RIP-140结合。这些观察结果表明,TAK1对PPARα.RXRα反式激活的拮抗作用至少在PPARα信号通路的两个水平上起作用:TAK1与PPARα.RXR竞争结合PPRE以及共同的共激活因子,如RIP-140。我们的结果表明TAK1在调节肝细胞中PPARα控制的基因表达方面具有重要作用。