Suppr超能文献

动物体内的内源性纤维素酶:从两种植物寄生性胞囊线虫中分离β-1, 4-内切葡聚糖酶基因

Endogenous cellulases in animals: isolation of beta-1, 4-endoglucanase genes from two species of plant-parasitic cyst nematodes.

作者信息

Smant G, Stokkermans J P, Yan Y, de Boer J M, Baum T J, Wang X, Hussey R S, Gommers F J, Henrissat B, Davis E L, Helder J, Schots A, Bakker J

机构信息

Nematology, Wageningen Agricultural University, Binnenhaven 10, 6709 PD Wageningen, The Netherlands.

出版信息

Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):4906-11. doi: 10.1073/pnas.95.9.4906.

Abstract

beta-1,4-Endoglucanases (EGases, EC 3.2.1.4) degrade polysaccharides possessing beta-1,4-glucan backbones such as cellulose and xyloglucan and have been found among extremely variegated taxonomic groups. Although many animal species depend on cellulose as their main energy source, most omnivores and herbivores are unable to produce EGases endogenously. So far, all previously identified EGase genes involved in the digestive system of animals originate from symbiotic microorganisms. Here we report on the synthesis of EGases in the esophageal glands of the cyst nematodes Globodera rostochiensis and Heterodera glycines. From each of the nematode species, two cDNAs were characterized and hydrophobic cluster analysis revealed that the four catalytic domains belong to family 5 of the glycosyl hydrolases (EC 3.2.1, 3.2.2, and 3.2.3). These domains show 37-44% overall amino acid identity with EGases from the bacteria Erwinia chrysanthemi, Clostridium acetobutylicum, and Bacillus subtilis. One EGase with a bacterial type of cellulose-binding domain was identified for each nematode species. The leucine-rich hydrophobic core of the signal peptide and the presence of a polyadenylated 3' end precluded the EGases from being of bacterial origin. Cyst nematodes are obligatory plant parasites and the identified EGases presumably facilitate the intracellular migration through plant roots by partial cell wall degradation.

摘要

β-1,4-内切葡聚糖酶(EG酶,EC 3.2.1.4)可降解具有β-1,4-葡聚糖主链的多糖,如纤维素和木葡聚糖,并且已在极为多样的分类群中被发现。尽管许多动物物种依赖纤维素作为其主要能量来源,但大多数杂食动物和食草动物无法内源性产生EG酶。到目前为止,所有先前鉴定出的与动物消化系统相关的EG酶基因均源自共生微生物。在此,我们报道了在罗斯托克球形胞囊线虫和大豆胞囊线虫的食管腺中EG酶的合成情况。从每种线虫中鉴定出两个cDNA,疏水簇分析表明这四个催化结构域属于糖基水解酶家族5(EC 3.2.1、3.2.2和3.2.3)。这些结构域与来自菊欧文氏菌、丙酮丁醇梭菌和枯草芽孢杆菌的EG酶的总体氨基酸同一性为37%-44%。每种线虫均鉴定出一种具有细菌型纤维素结合结构域的EG酶。信号肽富含亮氨酸的疏水核心以及聚腺苷酸化3'末端的存在排除了EG酶源自细菌的可能性。胞囊线虫是专性植物寄生虫,所鉴定出的EG酶可能通过部分细胞壁降解促进其在植物根内的细胞内迁移。

相似文献

引用本文的文献

6
Syncytium Induced by Plant-Parasitic Nematodes.植物寄生线虫诱导的合胞体
Results Probl Cell Differ. 2024;71:371-403. doi: 10.1007/978-3-031-37936-9_18.
8
Effectors of Root-Knot Nematodes: An Arsenal for Successful Parasitism.根结线虫的效应蛋白:成功寄生的武器库
Front Plant Sci. 2021 Dec 22;12:800030. doi: 10.3389/fpls.2021.800030. eCollection 2021.

本文引用的文献

1
Go where the science leads you.跟随科学的指引前进。
Annu Rev Phytopathol. 2010;48:1-19. doi: 10.1146/annurev-phyto-073009-114414.
6
Potato xyloglucan is built from XXGG-type subunits.马铃薯木葡聚糖由XXGG型亚基构成。
Carbohydr Res. 1996 Jul 19;288:219-32. doi: 10.1016/s0008-6215(96)90801-0.
9
Cellulose hydrolysis by bacteria and fungi.细菌和真菌对纤维素的水解作用。
Adv Microb Physiol. 1995;37:1-81. doi: 10.1016/s0065-2911(08)60143-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验