Suppr超能文献

原核生物和真核生物信号肽的鉴定及其切割位点的预测。

Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites.

作者信息

Nielsen H, Engelbrecht J, Brunak S, von Heijne G

机构信息

Department of Chemistry, Technical University of Denmark, Lyngby, Denmark.

出版信息

Protein Eng. 1997 Jan;10(1):1-6. doi: 10.1093/protein/10.1.1.

Abstract

We have developed a new method for the identification of signal peptides and their cleavage sites based on neural networks trained on separate sets of prokaryotic and eukaryotic sequence. The method performs significantly better than previous prediction schemes and can easily be applied on genome-wide data sets. Discrimination between cleaved signal peptides and uncleaved N-terminal signal-anchor sequences is also possible, though with lower precision. Predictions can be made on a publicly available WWW server.

摘要

我们基于在原核生物和真核生物序列的单独数据集上训练的神经网络,开发了一种识别信号肽及其切割位点的新方法。该方法的性能明显优于先前的预测方案,并且可以轻松应用于全基因组数据集。虽然精度较低,但区分切割的信号肽和未切割的N端信号锚定序列也是可能的。预测可以在一个公开可用的万维网服务器上进行。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验