Ebner S, Lenz A, Reider D, Fritsch P, Schuler G, Romani N
Department of Dermatology, University of Innsbruck, Austria.
Immunobiology. 1998 Mar;198(5):568-87. doi: 10.1016/S0171-2985(98)80079-X.
Progress in dendritic cell research has been overwhelming in the past few years. This was made possible by the recent development of simple methods to generate large numbers of dendritic cells. These methods use as starting populations for culture either CD34+ progenitor cells from cord blood or bone marrow, or monocytes from peripheral blood. The latter approach is critically dependent on the combination of GM-CSF and interleukin 4. Such "priming cultures" yield populations of immature dendritic cells (CD83-/CD86 +/- /CD115+/antigen uptake high/antigen processing high/T cell sensitization low). In order to generate mature dendritic cells a subsequent "differentiation culture" has to be added whereby monocyte-conditioned medium appears to be the optimal stimulus for maturation. This results in terminally mature dendritic cells (CD83+/CD86++/CD115-/antigen uptake low/antigen processing low/T cell sensitization high). We investigated the expression of some molecules involved in maturation and migration on human monocyte-derived dendritic cells from blood in comparison with dermal dendritic cells and epidermal Langerhans cells. We present a method to highly enrich epidermal Langerhans cells. Survival of purified Langerhans cells in culture is dependent on the presence of GM-CSF and TNF-alpha. During maturation a substantial part of the Langerhans cells loses expression of the cutaneous lymphocyte antigen (CLA); mature dendritic cells from the dermis are completely devoid of CLA. Similarly, CLA as well as CD15s (Sialyl Lewis x) and CD31 (PECAM-1) that can be readily detected on immature monocyte-derived dendritic cells are down-regulated upon maturation. CD68 expression is very low in cutaneous dendritic cells; in monocyte-derived dendritic cells this molecule is abundantly present. Subsets of monocyte-derived dendritic cells express E-cadherin; CD87 (urokinase plasminogen activator receptor) is weakly expressed on both immature and mature monocyte-derived dendritic cells. Taken together, these data suggest that the phenotype of monocyte-derived dendritic cells (E-cadherin low to negative, CD68++) is not indicative for a cutaneous destiny. Furthermore, the downregulation upon maturation of molecules involved in migration through vessel walls (CD31, CLA, CD15s) indicates that the entry of mature dendritic cells into lymphatic vessels may not be as rigidly regulated by adhesion molecules as the process of extravasation from blood vessels.
在过去几年中,树突状细胞研究取得了巨大进展。这得益于近期开发的能大量生成树突状细胞的简单方法。这些方法将脐血或骨髓中的CD34 +祖细胞,或外周血中的单核细胞作为起始培养群体。后一种方法严重依赖于粒细胞巨噬细胞集落刺激因子(GM-CSF)和白细胞介素4的组合。这种“启动培养”产生未成熟树突状细胞群体(CD83 - /CD86 +/- /CD115 + /抗原摄取高/抗原处理高/T细胞致敏低)。为了生成成熟树突状细胞,必须添加后续的“分化培养”,其中单核细胞条件培养基似乎是成熟的最佳刺激物。这会产生终末成熟的树突状细胞(CD83 + /CD86 ++ /CD115 - /抗原摄取低/抗原处理低/T细胞致敏高)。我们研究了与真皮树突状细胞和表皮朗格汉斯细胞相比,人血来源的单核细胞衍生树突状细胞上一些参与成熟和迁移的分子的表达。我们提出了一种高度富集表皮朗格汉斯细胞的方法。纯化的朗格汉斯细胞在培养中的存活取决于GM-CSF和肿瘤坏死因子-α(TNF-α)的存在。在成熟过程中,很大一部分朗格汉斯细胞失去皮肤淋巴细胞抗原(CLA)的表达;真皮来源的成熟树突状细胞完全没有CLA。同样,在未成熟的单核细胞衍生树突状细胞上易于检测到的CLA以及CD15s(唾液酸化路易斯x)和CD31(血小板内皮细胞黏附分子-1,PECAM-1)在成熟时下调。CD68在皮肤树突状细胞中的表达非常低;在单核细胞衍生树突状细胞中该分子大量存在。单核细胞衍生树突状细胞亚群表达E-钙黏蛋白;CD87(尿激酶型纤溶酶原激活物受体)在未成熟和成熟的单核细胞衍生树突状细胞上均弱表达。综上所述,这些数据表明单核细胞衍生树突状细胞的表型(E-钙黏蛋白低至阴性,CD68 ++)并不表明其具有皮肤命运。此外,参与血管壁迁移的分子(CD31、CLA、CD15s)在成熟时的下调表明,成熟树突状细胞进入淋巴管的过程可能不像从血管外渗的过程那样受到黏附分子的严格调控。