Tan S L, Gale M J, Katze M G
Department of Microbiology, University of Washington, Seattle 98195, USA.
Mol Cell Biol. 1998 May;18(5):2431-43. doi: 10.1128/MCB.18.5.2431.
The interferon (IFN)-induced, double-stranded RNA-activated protein kinase (PKR) mediates the antiviral and antiproliferative actions of IFN, in part, via its translational inhibitory properties. Previous studies have demonstrated that PKR forms dimers and that dimerization is likely to be required for activation and/or function. In the present study we used multiple approaches to examine the modulation of PKR dimerization. Deletion analysis with the lambda repressor fusion system identified a previously unrecognized site involved in PKR dimerization. This site comprised amino acids (aa) 244 to 296, which span part of the third basic region of PKR and the catalytic subdomains I and II. Using the yeast two-hybrid system and far-Western analysis, we verified the importance of this region for dimerization. Furthermore, coexpression of the 52-aa region alone inhibited the formation of full-length PKR dimers in the lambda repressor fusion and two-hybrid systems. Importantly, coexpression of aa 244 to 296 exerted a dominant-negative effect on wild-type kinase activity in a functional assay. Due to its role as a mediator of IFN-induced antiviral resistance, PKR is a target of viral and cellular inhibitors. Curiously, PKR aa 244 to 296 contain the binding site for a select group of specific inhibitors, including the cellular protein P58IPK. We demonstrated, utilizing both the yeast and lambda systems, that P58IPK, a member of the tetratricopeptide repeat protein family, can block kinase activity by preventing PKR dimerization. In contrast, a nonfunctional form of P58IPK lacking a TPR motif did not inhibit kinase activity or perturb PKR dimers. These results highlight a potential mechanism of PKR inhibition and define a novel class of PKR inhibitors. Finally, the data document the first known example of inhibition of protein kinase dimerization by a cellular protein inhibitor. On the basis of these results we propose a model for the regulation of PKR dimerization.
干扰素(IFN)诱导的双链RNA激活蛋白激酶(PKR)部分通过其翻译抑制特性介导IFN的抗病毒和抗增殖作用。先前的研究表明,PKR形成二聚体,并且二聚化可能是激活和/或发挥功能所必需的。在本研究中,我们使用多种方法来研究PKR二聚化的调节。利用λ阻遏物融合系统进行的缺失分析确定了一个先前未被识别的参与PKR二聚化的位点。该位点包含氨基酸(aa)244至296,跨越PKR的第三个碱性区域的一部分以及催化亚结构域I和II。使用酵母双杂交系统和远缘Western分析,我们验证了该区域对于二聚化至关重要。此外,单独共表达52个氨基酸的区域可抑制λ阻遏物融合和双杂交系统中全长PKR二聚体的形成。重要的是,在功能测定中,共表达氨基酸244至296对野生型激酶活性产生显性负效应。由于其作为IFN诱导的抗病毒抗性介质的作用,PKR是病毒和细胞抑制剂的作用靶点。奇怪的是,PKR氨基酸244至296包含一组特定抑制剂的结合位点,包括细胞蛋白P58IPK。我们利用酵母和λ系统证明,四肽重复蛋白家族成员P58IPK可通过阻止PKR二聚化来阻断激酶活性。相反,缺乏TPR基序的无功能形式的P58IPK不会抑制激酶活性或干扰PKR二聚体。这些结果突出了PKR抑制的潜在机制,并定义了一类新型的PKR抑制剂。最后,这些数据记录了细胞蛋白抑制剂抑制蛋白激酶二聚化的首个已知实例。基于这些结果,我们提出了一个PKR二聚化调节模型。