Gregoriou M, Noble M E, Watson K A, Garman E F, Krulle T M, de la Fuente C, Fleet G W, Oikonomakos N G, Johnson L N
Laboratory of Molecular Biophysics and Oxford Centre for Molecular Sciences, University of Oxford, United Kingdom.
Protein Sci. 1998 Apr;7(4):915-27. doi: 10.1002/pro.5560070409.
A glucopyranose spirohydantoin (a pyranose analogue of the potent herbicide, hydantocidin) has been identified as the highest affinity glucose analogue inhibitor of glycogen phosphorylase b (GPb). In order to elucidate the structural features that contribute to the binding, the structures of GPb in the native T state conformation and in complex with glucopyranose spirohydantoin have been determined at 100 K to 2.0 A and 1.8 A resolution, respectively, and refined to crystallographic R values of 0.197 (R[free] 0.248) and 0.182 (R[free] 0.229), respectively. The low temperature structure of GPb is almost identical to that of the previously determined room temperature structure, apart from a decrease in overall atomic temperature factors ((B) room temperature GPb = 34.9 A2; (B) 100 K GPb = 23.4 A2). The glucopyranose spirohydantoin inhibitor (Ki = 3.0 microM) binds at the catalytic site and induces small changes in two key regions of the protein: the 280s loop (residues 281-286) that results in a decrease in mobility of this region, and the 380s loop (residues 377-385) that undergoes more significant shifts in order to optimize contact to the ligand. The hydantoin group, that is responsible for increasing the affinity of the glucose compound by a factor of 10(3), makes only one hydrogen bond to the protein, from one of its NH groups to the main chain oxygen of His377. The other polar groups of the hydantoin group form hydrogen bonds to five water molecules. These waters are involved in extensive networks of hydrogen bonds and appear to be an integral part of the protein structure. Analysis of the water structure at the catalytic site of the native enzyme, shows that five waters are displaced by ligand binding and that there is a significant decrease in mobility of the remaining waters on formation of the GPb-hydantoin complex. The ability of the inhibitor to exploit existing waters, to displace waters and to recruit new waters appears to be important for the high affinity of the inhibitor.
一种吡喃葡萄糖螺环乙内酰脲(一种强效除草剂杀稻瘟菌素的吡喃糖类似物)已被确定为糖原磷酸化酶b(GPb)的最高亲和力葡萄糖类似物抑制剂。为了阐明有助于结合的结构特征,分别在100 K下以2.0 Å和1.8 Å的分辨率测定了处于天然T态构象的GPb以及与吡喃葡萄糖螺环乙内酰脲复合物的结构,并分别精修至晶体学R值为0.197(R[自由] 0.248)和0.182(R[自由] 0.229)。除了整体原子温度因子降低外(室温下的GPb的(B) = 34.9 Ų;100 K下的GPb的(B) = 23.4 Ų),GPb的低温结构与先前测定的室温结构几乎相同。吡喃葡萄糖螺环乙内酰脲抑制剂(Ki = 3.0 μM)结合在催化位点,并在蛋白质的两个关键区域引起小的变化:280s环(残基281 - 286),导致该区域的流动性降低;380s环(残基377 - 385),为了优化与配体的接触而发生更显著的位移。负责将葡萄糖化合物的亲和力提高10³倍的乙内酰脲基团,仅从其一个NH基团与His377的主链氧形成一个与蛋白质的氢键。乙内酰脲基团的其他极性基团与五个水分子形成氢键。这些水分子参与广泛的氢键网络,似乎是蛋白质结构的一个组成部分。对天然酶催化位点的水结构分析表明,五个水分子因配体结合而被取代,并且在形成GPb - 乙内酰脲复合物时,其余水分子的流动性显著降低。抑制剂利用现有水分子、取代水分子和募集新水分子的能力似乎对抑制剂的高亲和力很重要。