Bassok M, Chase V M, Martin S A
Department of Psychology, University of Washington, Seattle 98195-1525, USA.
Cogn Psychol. 1998 Mar;35(2):99-134. doi: 10.1006/cogp.1998.0675.
We show that the same mechanism that mediates analogical reasoning (i.e., structural alignment) leads to interpretive "content effects" in reasoning about arithmetic word problems. Specifically, we show that both college students and textbook writers tend to construct arithmetic word problems that maintain systematic correspondence between the semantic relations that people infer from pairs of real-world objects (e.g., apples and baskets support the semantic relation CONTAIN [content, container]) and mathematical relations between arguments of arithmetic operations (e.g., DIVIDE [dividend, divisor]). Such relational alignments, to which we refer here as semantic alignments, lead to selective and sensible application of abstract formal knowledge. For example, people usually divide apples among baskets rather than baskets among apples, and readily add apples and oranges but refrain from adding apples and baskets.
我们表明,介导类比推理的相同机制(即结构对齐)会在算术应用题推理中产生解释性的“内容效应”。具体而言,我们表明大学生和教科书编写者都倾向于构建算术应用题,这些应用题能保持人们从成对的现实世界对象中推断出的语义关系(例如,苹果和篮子支持语义关系“包含”[内容,容器])与算术运算的参数之间的数学关系(例如,“除法”[被除数,除数])之间的系统对应。这种关系对齐,我们在此称之为语义对齐,会导致抽象形式知识的选择性和明智应用。例如,人们通常是把苹果分到篮子里,而不是把篮子分到苹果里,并且很容易把苹果和橙子相加,但不会把苹果和篮子相加。
Cogn Psychol. 1998-3
J Exp Psychol Learn Mem Cogn. 2008-3
J Deaf Stud Deaf Educ. 2003
J Cogn Neurosci. 2002-1-1
Cognition. 2008-2
Neuropsychologia. 2008-9
Cognition. 2004-12
Brain Res. 2006-6-22
Mem Cognit. 2025-6-4
Nat Commun. 2023-8-24
Psychon Bull Rev. 2019-10
J Exp Psychol Gen. 2012-7-2