Suppr超能文献

酿酒酵母含有两个谷氧还蛋白基因,这两个基因是抵御活性氧所必需的。

The yeast Saccharomyces cerevisiae contains two glutaredoxin genes that are required for protection against reactive oxygen species.

作者信息

Luikenhuis S, Perrone G, Dawes I W, Grant C M

机构信息

Cooperative Research Center for Food Industry Innovation, School of Biochemistry and Molecular Genetics, University of New South Wales, Sydney, New South Wales 2052, Australia.

出版信息

Mol Biol Cell. 1998 May;9(5):1081-91. doi: 10.1091/mbc.9.5.1081.

Abstract

Glutaredoxins are small heat-stable proteins that act as glutathione-dependent disulfide oxidoreductases. Two genes, designated GRX1 and GRX2, which share 40-52% identity and 61-76% similarity with glutaredoxins from bacterial and mammalian species, were identified in the yeast Saccharomyces cerevisiae. Strains deleted for both GRX1 and GRX2 were viable but lacked heat-stable oxidoreductase activity using beta-hydroxyethylene disulfide as a substrate. Surprisingly, despite the high degree of homology between Grx1 and Grx2 (64% identity), the grx1 mutant was unaffected in oxidoreductase activity, whereas the grx2 mutant displayed only 20% of the wild-type activity, indicating that Grx2 accounted for the majority of this activity in vivo. Expression analysis indicated that this difference in activity did not arise as a result of differential expression of GRX1 and GRX2. In addition, a grx1 mutant was sensitive to oxidative stress induced by the superoxide anion, whereas a strain that lacked GRX2 was sensitive to hydrogen peroxide. Sensitivity to oxidative stress was not attributable to altered glutathione metabolism or cellular redox state, which did not vary between these strains. The expression of both genes was similarly elevated under various stress conditions, including oxidative, osmotic, heat, and stationary phase growth. Thus, Grx1 and Grx2 function differently in the cell, and we suggest that glutaredoxins may act as one of the primary defenses against mixed disulfides formed following oxidative damage to proteins.

摘要

谷氧还蛋白是一类小的热稳定蛋白,作为依赖谷胱甘肽的二硫键氧化还原酶发挥作用。在酿酒酵母中鉴定出了两个基因,分别命名为GRX1和GRX2,它们与细菌和哺乳动物的谷氧还蛋白有40 - 52%的同一性以及61 - 76%的相似性。缺失GRX1和GRX2的菌株能够存活,但以β - 羟乙烯二硫为底物时缺乏热稳定氧化还原酶活性。令人惊讶的是,尽管Grx1和Grx2之间具有高度同源性(64%的同一性),但grx1突变体的氧化还原酶活性未受影响,而grx2突变体仅表现出野生型活性的20%,这表明Grx2在体内占该活性的大部分。表达分析表明,这种活性差异并非由GRX1和GRX2的差异表达导致。此外,grx1突变体对超氧阴离子诱导的氧化应激敏感,而缺乏GRX2的菌株对过氧化氢敏感。对氧化应激的敏感性并非归因于谷胱甘肽代谢或细胞氧化还原状态的改变,这些在这些菌株之间并无差异。在包括氧化、渗透、热和稳定期生长等各种应激条件下,这两个基因的表达同样升高。因此,Grx1和Grx2在细胞中的功能不同,我们认为谷氧还蛋白可能作为对蛋白质氧化损伤后形成的混合二硫键的主要防御机制之一发挥作用。

相似文献

2
A single glutaredoxin or thioredoxin gene is essential for viability in the yeast Saccharomyces cerevisiae.
Mol Microbiol. 2000 Jun;36(5):1167-74. doi: 10.1046/j.1365-2958.2000.01948.x.
5
Role of yeast glutaredoxins as glutathione S-transferases.
J Biol Chem. 2003 Jun 20;278(25):22492-7. doi: 10.1074/jbc.M301387200. Epub 2003 Apr 8.
6
Differential regulation of glutaredoxin gene expression in response to stress conditions in the yeast Saccharomyces cerevisiae.
Biochim Biophys Acta. 2000 Jan 31;1490(1-2):33-42. doi: 10.1016/s0167-4781(99)00234-1.
8
Identification and characterization of a new mammalian glutaredoxin (thioltransferase), Grx2.
J Biol Chem. 2001 Aug 10;276(32):30374-80. doi: 10.1074/jbc.M100020200. Epub 2001 Jun 7.
9
Differential expression and role of two dithiol glutaredoxins Grx1 and Grx2 in Schizosaccharomyces pombe.
Biochem Biophys Res Commun. 2004 Sep 3;321(4):922-9. doi: 10.1016/j.bbrc.2004.07.042.
10
Structural basis for the different activities of yeast Grx1 and Grx2.
Biochim Biophys Acta. 2010 Jul;1804(7):1542-7. doi: 10.1016/j.bbapap.2010.04.010. Epub 2010 Apr 24.

引用本文的文献

1
Ageing-dependent thiol oxidation reveals early oxidation of proteins with core proteostasis functions.
Life Sci Alliance. 2024 Feb 21;7(5). doi: 10.26508/lsa.202302300. Print 2024 May.
3
Evidence that protein thiols are not primary targets of intracellular reactive oxygen species in growing .
Front Microbiol. 2023 Dec 13;14:1305973. doi: 10.3389/fmicb.2023.1305973. eCollection 2023.
4
The Monothiol Glutaredoxin Grx4 Influences Iron Homeostasis and Virulence in .
J Fungi (Basel). 2023 Nov 17;9(11):1112. doi: 10.3390/jof9111112.
5
Glutathione production by Saccharomyces cerevisiae: current state and perspectives.
Appl Microbiol Biotechnol. 2022 Mar;106(5-6):1879-1894. doi: 10.1007/s00253-022-11826-0. Epub 2022 Feb 19.
8
Chemical Genomic Profiling Unveils the in Vitro and in Vivo Antiplasmodial Mechanism of Açaí ( Mart.) Polyphenols.
ACS Omega. 2019 Sep 13;4(13):15628-15635. doi: 10.1021/acsomega.9b02127. eCollection 2019 Sep 24.
9
The role of thiols in antioxidant systems.
Free Radic Biol Med. 2019 Aug 20;140:14-27. doi: 10.1016/j.freeradbiomed.2019.05.035. Epub 2019 Jun 13.
10
Random Mutagenesis Applied to Reveal Factors Involved in Oxidative Tolerance and Biofilm Formation in Foodborne .
Front Microbiol. 2019 May 1;10:877. doi: 10.3389/fmicb.2019.00877. eCollection 2019.

本文引用的文献

1
Synthesis and role of glutathione in protection against oxidative stress in yeast.
Redox Rep. 1996 Aug;2(4):223-9. doi: 10.1080/13510002.1996.11747054.
7
Evidence for the presence of thioltransferase in the lens.
Exp Eye Res. 1996 Oct;63(4):433-41. doi: 10.1006/exer.1996.0133.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验