Vidal O, Longin R, Prigent-Combaret C, Dorel C, Hooreman M, Lejeune P
Laboratoire de Génétique Moléculaire des Microorganismes et des Interactions Cellulaires, CNRS UMR 5577, Institut National des Sciences Appliquées de Lyon, Villeurbanne, France.
J Bacteriol. 1998 May;180(9):2442-9. doi: 10.1128/JB.180.9.2442-2449.1998.
Classical laboratory strains of Escherichia coli do not spontaneously colonize inert surfaces. However, when maintained in continuous culture for evolution studies or industrial processes, these strains usually generate adherent mutants which form a thick biofilm, visible with the naked eye, on the wall of the culture apparatus. Such a mutant was isolated to identify the genes and morphological structures involved in biofilm formation in the very well characterized E. coli K-12 context. This mutant acquired the ability to colonize hydrophilic (glass) and hydrophobic (polystyrene) surfaces and to form aggregation clumps. A single point mutation, resulting in the replacement of a leucine by an arginine residue at position 43 in the regulatory protein OmpR, was responsible for this phenotype. Observations by electron microscopy revealed the presence at the surfaces of the mutant bacteria of fibrillar structures looking like the particular fimbriae described by the Olsén group and designated curli (A. Olsén, A. Jonsson, and S. Normark, Nature 338:652-655, 1989). The production of curli (visualized by Congo red binding) and the expression of the csgA gene encoding curlin synthesis (monitored by coupling a reporter gene to its promoter) were significantly increased in the presence of the ompR allele described in this work. Transduction of knockout mutations in either csgA or ompR caused the loss of the adherence properties of several biofilm-forming E. coli strains, including all those which were isolated in this work from the wall of a continuous culture apparatus and two clinical strains isolated from patients with catheter-related infections. These results indicate that curli are morphological structures of major importance for inert surface colonization and biofilm formation and demonstrate that their synthesis is under the control of the EnvZ-OmpR two-component regulatory system.
大肠杆菌的经典实验室菌株不会自发地在惰性表面定殖。然而,当在连续培养中用于进化研究或工业过程时,这些菌株通常会产生粘附突变体,这些突变体在培养装置壁上形成肉眼可见的厚厚的生物膜。分离出这样一个突变体,以确定在特征明确的大肠杆菌K-12背景下参与生物膜形成的基因和形态结构。这个突变体获得了在亲水(玻璃)和疏水(聚苯乙烯)表面定殖并形成聚集团块的能力。一个单点突变,导致调节蛋白OmpR第43位的亮氨酸被精氨酸残基取代,是造成这种表型的原因。电子显微镜观察显示,突变细菌表面存在纤维状结构,类似于奥尔森团队描述的特殊菌毛,并被命名为卷曲菌毛(A. 奥尔森、A. 琼森和S. 诺马克,《自然》338:652 - 655,第1989页)。在这项工作中描述的ompR等位基因存在的情况下,卷曲菌毛的产生(通过刚果红结合可视化)和编码卷曲菌素合成的csgA基因的表达(通过将报告基因与其启动子偶联进行监测)显著增加。转导csgA或ompR中的敲除突变导致几种形成生物膜的大肠杆菌菌株丧失粘附特性,包括所有在这项工作中从连续培养装置壁上分离出的菌株以及从患有导管相关感染的患者中分离出的两种临床菌株。这些结果表明,卷曲菌毛是对惰性表面定殖和生物膜形成至关重要的形态结构,并证明它们的合成受EnvZ - OmpR双组分调节系统的控制。