Suppr超能文献

赖氨酸R型转录激活因子BenM对不动杆菌属ADP1菌株中苯甲酸降解的调控

Regulation of benzoate degradation in Acinetobacter sp. strain ADP1 by BenM, a LysR-type transcriptional activator.

作者信息

Collier L S, Gaines G L, Neidle E L

机构信息

Department of Microbiology, University of Georgia, Athens 30602-2605, USA.

出版信息

J Bacteriol. 1998 May;180(9):2493-501. doi: 10.1128/JB.180.9.2493-2501.1998.

Abstract

In Acinetobacter sp. strain ADP1, benzoate degradation requires the ben genes for converting benzoate to catechol and the cat genes for degrading catechol. Here we describe a novel transcriptional activator, BenM, that regulates the chromosomal ben and cat genes. BenM is homologous to CatM, a LysR-type transcriptional activator of the cat genes. Unusual regulatory features of this system include the abilities of both BenM and CatM to recognize the same inducer, cis,cis-muconate, and to regulate some of the same genes, such as catA and catB. Unlike CatM, BenM responded to benzoate. Benzoate together with cis,cis-muconate increased the BenM-dependent expression of the benABCDE operon synergistically. CatM was not required for this synergism, nor did CatM regulate the expression of a chromosomal benA::lacZ transcriptional fusion. BenM-mediated regulation differs significantly from that of the TOL plasmid-encoded conversion of benzoate to catechol in pseudomonads. The benM gene is immediately upstream of, and divergently transcribed from, benA, and a possible DNA binding site for BenM was identified between the two coding regions. Two mutations in the predicted operator/promoter region rendered ben gene expression either constitutive or inducible by cis,cis-muconate but not benzoate. Mutants lacking BenM, CatM, or both of these regulators degraded aromatic compounds at different rates, and the levels of intermediary metabolites that accumulated depended on the genetic background. These studies indicated that BenM is necessary for ben gene expression but not for expression of the cat genes, which can be regulated by CatM. In a catM-disrupted strain, BenM was able to induce higher levels of catA expression than catB expression.

摘要

在不动杆菌属菌株ADP1中,苯甲酸降解需要将苯甲酸转化为儿茶酚的ben基因以及降解儿茶酚的cat基因。在此,我们描述了一种新型转录激活因子BenM,它调控染色体上的ben和cat基因。BenM与CatM同源,CatM是cat基因的一种LysR型转录激活因子。该系统不同寻常的调控特征包括BenM和CatM都能识别相同的诱导物顺,顺-粘康酸,并调控一些相同的基因,如catA和catB。与CatM不同,BenM对苯甲酸有反应。苯甲酸与顺,顺-粘康酸协同增加了benABCDE操纵子依赖BenM的表达。这种协同作用不需要CatM,CatM也不调控染色体上benA::lacZ转录融合体的表达。BenM介导的调控与假单胞菌中TOL质粒编码的将苯甲酸转化为儿茶酚的调控有显著差异。benM基因紧邻benA上游且转录方向相反,在两个编码区域之间鉴定出一个可能的BenM DNA结合位点。预测的操纵子/启动子区域中的两个突变使ben基因表达要么组成型表达,要么由顺,顺-粘康酸诱导表达,但不受苯甲酸诱导。缺乏BenM、CatM或这两种调控因子的突变体以不同速率降解芳香族化合物,积累的中间代谢物水平取决于遗传背景。这些研究表明,BenM对ben基因表达是必需的,但对cat基因表达不是必需的,cat基因可由CatM调控。在catM缺失的菌株中,BenM诱导catA表达的水平高于catB表达。

相似文献

1
3
CatM regulation of the benABCDE operon: functional divergence of two LysR-type paralogs in Acinetobacter baylyi ADP1.
Appl Environ Microbiol. 2006 Mar;72(3):1749-58. doi: 10.1128/AEM.72.3.1749-1758.2006.
5
Inducer responses of BenM, a LysR-type transcriptional regulator from Acinetobacter baylyi ADP1.
Mol Microbiol. 2009 May;72(4):881-94. doi: 10.1111/j.1365-2958.2009.06686.x. Epub 2009 Apr 8.
7
catM encodes a LysR-type transcriptional activator regulating catechol degradation in Acinetobacter calcoaceticus.
J Bacteriol. 1995 Oct;177(20):5891-8. doi: 10.1128/jb.177.20.5891-5898.1995.
8
Distinct effector-binding sites enable synergistic transcriptional activation by BenM, a LysR-type regulator.
J Mol Biol. 2007 Mar 30;367(3):616-29. doi: 10.1016/j.jmb.2006.09.090. Epub 2006 Oct 4.
10
Crystallization of the effector-binding domains of BenM and CatM, LysR-type transcriptional regulators from Acinetobacter sp. ADP1.
Acta Crystallogr D Biol Crystallogr. 2004 Jan;60(Pt 1):105-8. doi: 10.1107/s0907444903021589. Epub 2003 Dec 18.

引用本文的文献

1
produces more guaiacol in media and has duplicate copies of compared to closely related .
Appl Environ Microbiol. 2024 Nov 20;90(11):e0042224. doi: 10.1128/aem.00422-24. Epub 2024 Oct 9.
2
Fundamentals and Exceptions of the LysR-type Transcriptional Regulators.
ACS Synth Biol. 2024 Oct 18;13(10):3069-3092. doi: 10.1021/acssynbio.4c00219. Epub 2024 Sep 22.
3
Computation-guided transcription factor biosensor specificity engineering for adipic acid detection.
Comput Struct Biotechnol J. 2024 May 15;23:2211-2219. doi: 10.1016/j.csbj.2024.05.002. eCollection 2024 Dec.
4
A comprehensive genomic analysis provides insights on the high environmental adaptability of strains.
Front Microbiol. 2023 Apr 17;14:1177951. doi: 10.3389/fmicb.2023.1177951. eCollection 2023.
5
TFBMiner: A User-Friendly Command Line Tool for the Rapid Mining of Transcription Factor-Based Biosensors.
ACS Synth Biol. 2023 May 19;12(5):1497-1507. doi: 10.1021/acssynbio.2c00679. Epub 2023 Apr 13.
6
Bacterial lifestyle switch in response to algal metabolites.
Elife. 2023 Jan 24;12:e84400. doi: 10.7554/eLife.84400.
10
Advenella mandrilli sp. nov., a bacterium isolated from the faeces of Mandrillus sphinx.
Antonie Van Leeuwenhoek. 2022 Feb;115(2):271-280. doi: 10.1007/s10482-021-01695-4. Epub 2022 Jan 15.

本文引用的文献

2
6
The beta-ketoadipate pathway and the biology of self-identity.
Annu Rev Microbiol. 1996;50:553-90. doi: 10.1146/annurev.micro.50.1.553.
7
The XylS/AraC family of regulators.
Nucleic Acids Res. 1993 Feb 25;21(4):807-10. doi: 10.1093/nar/21.4.807.
10
Molecular biology of the LysR family of transcriptional regulators.
Annu Rev Microbiol. 1993;47:597-626. doi: 10.1146/annurev.mi.47.100193.003121.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验